| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2reuimp.c | ⊢ ( 𝑏  =  𝑐  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 2 |  | 2reuimp.d | ⊢ ( 𝑎  =  𝑑  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | 2reuimp.a | ⊢ ( 𝑎  =  𝑑  →  ( 𝜃  ↔  𝜏 ) ) | 
						
							| 4 |  | 2reuimp.e | ⊢ ( 𝑏  =  𝑒  →  ( 𝜑  ↔  𝜂 ) ) | 
						
							| 5 |  | 2reuimp.f | ⊢ ( 𝑐  =  𝑓  →  ( 𝜃  ↔  𝜓 ) ) | 
						
							| 6 | 1 | reu8 | ⊢ ( ∃! 𝑏  ∈  𝑉 𝜑  ↔  ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) ) ) | 
						
							| 7 | 6 | reubii | ⊢ ( ∃! 𝑎  ∈  𝑉 ∃! 𝑏  ∈  𝑉 𝜑  ↔  ∃! 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) ) ) | 
						
							| 8 | 3 | imbi1d | ⊢ ( 𝑎  =  𝑑  →  ( ( 𝜃  →  𝑏  =  𝑐 )  ↔  ( 𝜏  →  𝑏  =  𝑐 ) ) ) | 
						
							| 9 | 8 | ralbidv | ⊢ ( 𝑎  =  𝑑  →  ( ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 )  ↔  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) ) ) | 
						
							| 10 | 2 9 | anbi12d | ⊢ ( 𝑎  =  𝑑  →  ( ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ↔  ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑎  =  𝑑  →  ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) ) ) ) | 
						
							| 12 | 11 | reu8 | ⊢ ( ∃! 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ↔  ∃ 𝑎  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ∧  ∀ 𝑑  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) ) ) | 
						
							| 13 |  | r19.28v | ⊢ ( ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ∧  ∀ 𝑑  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∀ 𝑑  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ∧  ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) ) ) | 
						
							| 14 |  | equequ1 | ⊢ ( 𝑏  =  𝑒  →  ( 𝑏  =  𝑐  ↔  𝑒  =  𝑐 ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑏  =  𝑒  →  ( ( 𝜃  →  𝑏  =  𝑐 )  ↔  ( 𝜃  →  𝑒  =  𝑐 ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑏  =  𝑒  →  ( ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 )  ↔  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) ) | 
						
							| 17 | 4 16 | anbi12d | ⊢ ( 𝑏  =  𝑒  →  ( ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ↔  ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) ) ) | 
						
							| 18 | 17 | cbvrexvw | ⊢ ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ↔  ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) ) | 
						
							| 19 |  | r19.23v | ⊢ ( ∀ 𝑏  ∈  𝑉 ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ↔  ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) ) | 
						
							| 20 |  | r19.28v | ⊢ ( ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  ∧  ∀ 𝑏  ∈  𝑉 ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∀ 𝑏  ∈  𝑉 ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) ) ) | 
						
							| 21 |  | ancom | ⊢ ( ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ↔  ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ∧  ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) ) ) | 
						
							| 22 |  | r19.42v | ⊢ ( ∃ 𝑒  ∈  𝑉 ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ∧  ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) )  ↔  ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ∧  ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) ) ) | 
						
							| 23 | 21 22 | bitr4i | ⊢ ( ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ↔  ∃ 𝑒  ∈  𝑉 ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ∧  ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) ) ) | 
						
							| 24 |  | equequ2 | ⊢ ( 𝑐  =  𝑓  →  ( 𝑒  =  𝑐  ↔  𝑒  =  𝑓 ) ) | 
						
							| 25 | 5 24 | imbi12d | ⊢ ( 𝑐  =  𝑓  →  ( ( 𝜃  →  𝑒  =  𝑐 )  ↔  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 26 | 25 | cbvralvw | ⊢ ( ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 )  ↔  ∀ 𝑓  ∈  𝑉 ( 𝜓  →  𝑒  =  𝑓 ) ) | 
						
							| 27 |  | r19.28v | ⊢ ( ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ∀ 𝑓  ∈  𝑉 ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ( ∀ 𝑓  ∈  𝑉 ( 𝜓  →  𝑒  =  𝑓 )  →  ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) ) | 
						
							| 29 | 28 | expcom | ⊢ ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ( 𝜂  →  ( ∀ 𝑓  ∈  𝑉 ( 𝜓  →  𝑒  =  𝑓 )  →  ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) ) ) | 
						
							| 30 | 26 29 | syl7bi | ⊢ ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ( 𝜂  →  ( ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 )  →  ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) ) ) | 
						
							| 31 | 30 | imp32 | ⊢ ( ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ∧  ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) )  →  ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 32 | 31 | reximi | ⊢ ( ∃ 𝑒  ∈  𝑉 ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ∧  ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) ) )  →  ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 33 | 23 32 | sylbi | ⊢ ( ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 34 | 33 | ralimi | ⊢ ( ∀ 𝑏  ∈  𝑉 ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 35 | 20 34 | syl | ⊢ ( ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  ∧  ∀ 𝑏  ∈  𝑉 ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  →  ( ∀ 𝑏  ∈  𝑉 ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) ) | 
						
							| 37 | 19 36 | biimtrrid | ⊢ ( ∃ 𝑒  ∈  𝑉 ( 𝜂  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑒  =  𝑐 ) )  →  ( ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) ) | 
						
							| 38 | 18 37 | sylbi | ⊢ ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  →  ( ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ∧  ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 40 | 39 | ralimi | ⊢ ( ∀ 𝑑  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ∧  ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 41 | 13 40 | syl | ⊢ ( ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ∧  ∀ 𝑑  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 42 | 41 | reximi | ⊢ ( ∃ 𝑎  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  ∧  ∀ 𝑑  ∈  𝑉 ( ∃ 𝑏  ∈  𝑉 ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∃ 𝑎  ∈  𝑉 ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 43 | 12 42 | sylbi | ⊢ ( ∃! 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝜑  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜃  →  𝑏  =  𝑐 ) )  →  ∃ 𝑎  ∈  𝑉 ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 44 | 7 43 | sylbi | ⊢ ( ∃! 𝑎  ∈  𝑉 ∃! 𝑏  ∈  𝑉 𝜑  →  ∃ 𝑎  ∈  𝑉 ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) |