Step |
Hyp |
Ref |
Expression |
1 |
|
2reuimp.c |
⊢ ( 𝑏 = 𝑐 → ( 𝜑 ↔ 𝜃 ) ) |
2 |
|
2reuimp.d |
⊢ ( 𝑎 = 𝑑 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
2reuimp.a |
⊢ ( 𝑎 = 𝑑 → ( 𝜃 ↔ 𝜏 ) ) |
4 |
|
2reuimp.e |
⊢ ( 𝑏 = 𝑒 → ( 𝜑 ↔ 𝜂 ) ) |
5 |
|
2reuimp.f |
⊢ ( 𝑐 = 𝑓 → ( 𝜃 ↔ 𝜓 ) ) |
6 |
1
|
reu8 |
⊢ ( ∃! 𝑏 ∈ 𝑉 𝜑 ↔ ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ) |
7 |
6
|
reubii |
⊢ ( ∃! 𝑎 ∈ 𝑉 ∃! 𝑏 ∈ 𝑉 𝜑 ↔ ∃! 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ) |
8 |
3
|
imbi1d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝜃 → 𝑏 = 𝑐 ) ↔ ( 𝜏 → 𝑏 = 𝑐 ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑎 = 𝑑 → ( ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ↔ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) ) |
10 |
2 9
|
anbi12d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ↔ ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑎 = 𝑑 → ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) ) ) |
12 |
11
|
reu8 |
⊢ ( ∃! 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ) |
13 |
|
r19.28v |
⊢ ( ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∀ 𝑑 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ∧ ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ) |
14 |
|
equequ1 |
⊢ ( 𝑏 = 𝑒 → ( 𝑏 = 𝑐 ↔ 𝑒 = 𝑐 ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑏 = 𝑒 → ( ( 𝜃 → 𝑏 = 𝑐 ) ↔ ( 𝜃 → 𝑒 = 𝑐 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑏 = 𝑒 → ( ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ↔ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) |
17 |
4 16
|
anbi12d |
⊢ ( 𝑏 = 𝑒 → ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ↔ ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) ) |
18 |
17
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ↔ ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) |
19 |
|
r19.23v |
⊢ ( ∀ 𝑏 ∈ 𝑉 ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) |
20 |
|
r19.28v |
⊢ ( ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ∧ ∀ 𝑏 ∈ 𝑉 ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∀ 𝑏 ∈ 𝑉 ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ) |
21 |
|
ancom |
⊢ ( ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ↔ ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ∧ ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) ) |
22 |
|
r19.42v |
⊢ ( ∃ 𝑒 ∈ 𝑉 ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ∧ ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) ↔ ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ∧ ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) ) |
23 |
21 22
|
bitr4i |
⊢ ( ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ↔ ∃ 𝑒 ∈ 𝑉 ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ∧ ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) ) |
24 |
|
equequ2 |
⊢ ( 𝑐 = 𝑓 → ( 𝑒 = 𝑐 ↔ 𝑒 = 𝑓 ) ) |
25 |
5 24
|
imbi12d |
⊢ ( 𝑐 = 𝑓 → ( ( 𝜃 → 𝑒 = 𝑐 ) ↔ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ↔ ∀ 𝑓 ∈ 𝑉 ( 𝜓 → 𝑒 = 𝑓 ) ) |
27 |
|
r19.28v |
⊢ ( ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ∀ 𝑓 ∈ 𝑉 ( 𝜓 → 𝑒 = 𝑓 ) ) → ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
28 |
27
|
ex |
⊢ ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ( ∀ 𝑓 ∈ 𝑉 ( 𝜓 → 𝑒 = 𝑓 ) → ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) ) |
29 |
28
|
expcom |
⊢ ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ( 𝜂 → ( ∀ 𝑓 ∈ 𝑉 ( 𝜓 → 𝑒 = 𝑓 ) → ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) ) ) |
30 |
26 29
|
syl7bi |
⊢ ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ( 𝜂 → ( ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) → ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) ) ) |
31 |
30
|
imp32 |
⊢ ( ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ∧ ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) → ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
32 |
31
|
reximi |
⊢ ( ∃ 𝑒 ∈ 𝑉 ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ∧ ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ) → ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
33 |
23 32
|
sylbi |
⊢ ( ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
34 |
33
|
ralimi |
⊢ ( ∀ 𝑏 ∈ 𝑉 ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
35 |
20 34
|
syl |
⊢ ( ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) ∧ ∀ 𝑏 ∈ 𝑉 ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
36 |
35
|
ex |
⊢ ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) → ( ∀ 𝑏 ∈ 𝑉 ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) ) |
37 |
19 36
|
syl5bir |
⊢ ( ∃ 𝑒 ∈ 𝑉 ( 𝜂 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑒 = 𝑐 ) ) → ( ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) ) |
38 |
18 37
|
sylbi |
⊢ ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) → ( ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) ) |
39 |
38
|
imp |
⊢ ( ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ∧ ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
40 |
39
|
ralimi |
⊢ ( ∀ 𝑑 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ∧ ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
41 |
13 40
|
syl |
⊢ ( ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
42 |
41
|
reximi |
⊢ ( ∃ 𝑎 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝑉 ( ∃ 𝑏 ∈ 𝑉 ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∃ 𝑎 ∈ 𝑉 ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
43 |
12 42
|
sylbi |
⊢ ( ∃! 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜃 → 𝑏 = 𝑐 ) ) → ∃ 𝑎 ∈ 𝑉 ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
44 |
7 43
|
sylbi |
⊢ ( ∃! 𝑎 ∈ 𝑉 ∃! 𝑏 ∈ 𝑉 𝜑 → ∃ 𝑎 ∈ 𝑉 ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |