Metamath Proof Explorer


Theorem 2reuimp0

Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification. The involved wffs depend on the setvar variables as follows: ph(a,b), th(a,c), ch(d,b), ta(d,c), et(a,e), ps(a,f) (Contributed by AV, 13-Mar-2023)

Ref Expression
Hypotheses 2reuimp.c b = c φ θ
2reuimp.d a = d φ χ
2reuimp.a a = d θ τ
2reuimp.e b = e φ η
2reuimp.f c = f θ ψ
Assertion 2reuimp0 ∃! a V ∃! b V φ a V d V b V e V f V η χ c V τ b = c a = d ψ e = f

Proof

Step Hyp Ref Expression
1 2reuimp.c b = c φ θ
2 2reuimp.d a = d φ χ
3 2reuimp.a a = d θ τ
4 2reuimp.e b = e φ η
5 2reuimp.f c = f θ ψ
6 1 reu8 ∃! b V φ b V φ c V θ b = c
7 6 reubii ∃! a V ∃! b V φ ∃! a V b V φ c V θ b = c
8 3 imbi1d a = d θ b = c τ b = c
9 8 ralbidv a = d c V θ b = c c V τ b = c
10 2 9 anbi12d a = d φ c V θ b = c χ c V τ b = c
11 10 rexbidv a = d b V φ c V θ b = c b V χ c V τ b = c
12 11 reu8 ∃! a V b V φ c V θ b = c a V b V φ c V θ b = c d V b V χ c V τ b = c a = d
13 r19.28v b V φ c V θ b = c d V b V χ c V τ b = c a = d d V b V φ c V θ b = c b V χ c V τ b = c a = d
14 equequ1 b = e b = c e = c
15 14 imbi2d b = e θ b = c θ e = c
16 15 ralbidv b = e c V θ b = c c V θ e = c
17 4 16 anbi12d b = e φ c V θ b = c η c V θ e = c
18 17 cbvrexvw b V φ c V θ b = c e V η c V θ e = c
19 r19.23v b V χ c V τ b = c a = d b V χ c V τ b = c a = d
20 r19.28v e V η c V θ e = c b V χ c V τ b = c a = d b V e V η c V θ e = c χ c V τ b = c a = d
21 ancom e V η c V θ e = c χ c V τ b = c a = d χ c V τ b = c a = d e V η c V θ e = c
22 r19.42v e V χ c V τ b = c a = d η c V θ e = c χ c V τ b = c a = d e V η c V θ e = c
23 21 22 bitr4i e V η c V θ e = c χ c V τ b = c a = d e V χ c V τ b = c a = d η c V θ e = c
24 equequ2 c = f e = c e = f
25 5 24 imbi12d c = f θ e = c ψ e = f
26 25 cbvralvw c V θ e = c f V ψ e = f
27 r19.28v η χ c V τ b = c a = d f V ψ e = f f V η χ c V τ b = c a = d ψ e = f
28 27 ex η χ c V τ b = c a = d f V ψ e = f f V η χ c V τ b = c a = d ψ e = f
29 28 expcom χ c V τ b = c a = d η f V ψ e = f f V η χ c V τ b = c a = d ψ e = f
30 26 29 syl7bi χ c V τ b = c a = d η c V θ e = c f V η χ c V τ b = c a = d ψ e = f
31 30 imp32 χ c V τ b = c a = d η c V θ e = c f V η χ c V τ b = c a = d ψ e = f
32 31 reximi e V χ c V τ b = c a = d η c V θ e = c e V f V η χ c V τ b = c a = d ψ e = f
33 23 32 sylbi e V η c V θ e = c χ c V τ b = c a = d e V f V η χ c V τ b = c a = d ψ e = f
34 33 ralimi b V e V η c V θ e = c χ c V τ b = c a = d b V e V f V η χ c V τ b = c a = d ψ e = f
35 20 34 syl e V η c V θ e = c b V χ c V τ b = c a = d b V e V f V η χ c V τ b = c a = d ψ e = f
36 35 ex e V η c V θ e = c b V χ c V τ b = c a = d b V e V f V η χ c V τ b = c a = d ψ e = f
37 19 36 syl5bir e V η c V θ e = c b V χ c V τ b = c a = d b V e V f V η χ c V τ b = c a = d ψ e = f
38 18 37 sylbi b V φ c V θ b = c b V χ c V τ b = c a = d b V e V f V η χ c V τ b = c a = d ψ e = f
39 38 imp b V φ c V θ b = c b V χ c V τ b = c a = d b V e V f V η χ c V τ b = c a = d ψ e = f
40 39 ralimi d V b V φ c V θ b = c b V χ c V τ b = c a = d d V b V e V f V η χ c V τ b = c a = d ψ e = f
41 13 40 syl b V φ c V θ b = c d V b V χ c V τ b = c a = d d V b V e V f V η χ c V τ b = c a = d ψ e = f
42 41 reximi a V b V φ c V θ b = c d V b V χ c V τ b = c a = d a V d V b V e V f V η χ c V τ b = c a = d ψ e = f
43 12 42 sylbi ∃! a V b V φ c V θ b = c a V d V b V e V f V η χ c V τ b = c a = d ψ e = f
44 7 43 sylbi ∃! a V ∃! b V φ a V d V b V e V f V η χ c V τ b = c a = d ψ e = f