Metamath Proof Explorer


Theorem 4atlem12a

Description: Lemma for 4at . Substitute T for P . (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l
|- .<_ = ( le ` K )
4at.j
|- .\/ = ( join ` K )
4at.a
|- A = ( Atoms ` K )
Assertion 4atlem12a
|- ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) <-> ( ( P .\/ U ) .\/ ( V .\/ W ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) )

Proof

Step Hyp Ref Expression
1 4at.l
 |-  .<_ = ( le ` K )
2 4at.j
 |-  .\/ = ( join ` K )
3 4at.a
 |-  A = ( Atoms ` K )
4 simp11
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> K e. HL )
5 simp12
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> P e. A )
6 simp13
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> T e. A )
7 4 hllatd
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> K e. Lat )
8 simp21
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> U e. A )
9 simp22
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> V e. A )
10 eqid
 |-  ( Base ` K ) = ( Base ` K )
11 10 2 3 hlatjcl
 |-  ( ( K e. HL /\ U e. A /\ V e. A ) -> ( U .\/ V ) e. ( Base ` K ) )
12 4 8 9 11 syl3anc
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( U .\/ V ) e. ( Base ` K ) )
13 simp23
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> W e. A )
14 10 3 atbase
 |-  ( W e. A -> W e. ( Base ` K ) )
15 13 14 syl
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> W e. ( Base ` K ) )
16 10 2 latjcl
 |-  ( ( K e. Lat /\ ( U .\/ V ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( U .\/ V ) .\/ W ) e. ( Base ` K ) )
17 7 12 15 16 syl3anc
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( U .\/ V ) .\/ W ) e. ( Base ` K ) )
18 simp3
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> -. P .<_ ( ( U .\/ V ) .\/ W ) )
19 10 1 2 3 hlexchb2
 |-  ( ( K e. HL /\ ( P e. A /\ T e. A /\ ( ( U .\/ V ) .\/ W ) e. ( Base ` K ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( P .<_ ( T .\/ ( ( U .\/ V ) .\/ W ) ) <-> ( P .\/ ( ( U .\/ V ) .\/ W ) ) = ( T .\/ ( ( U .\/ V ) .\/ W ) ) ) )
20 4 5 6 17 18 19 syl131anc
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( P .<_ ( T .\/ ( ( U .\/ V ) .\/ W ) ) <-> ( P .\/ ( ( U .\/ V ) .\/ W ) ) = ( T .\/ ( ( U .\/ V ) .\/ W ) ) ) )
21 1 2 3 4atlem4a
 |-  ( ( ( K e. HL /\ T e. A /\ U e. A ) /\ ( V e. A /\ W e. A ) ) -> ( ( T .\/ U ) .\/ ( V .\/ W ) ) = ( T .\/ ( ( U .\/ V ) .\/ W ) ) )
22 4 6 8 9 13 21 syl32anc
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( T .\/ U ) .\/ ( V .\/ W ) ) = ( T .\/ ( ( U .\/ V ) .\/ W ) ) )
23 22 breq2d
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) <-> P .<_ ( T .\/ ( ( U .\/ V ) .\/ W ) ) ) )
24 1 2 3 4atlem4a
 |-  ( ( ( K e. HL /\ P e. A /\ U e. A ) /\ ( V e. A /\ W e. A ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) = ( P .\/ ( ( U .\/ V ) .\/ W ) ) )
25 4 5 8 9 13 24 syl32anc
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) = ( P .\/ ( ( U .\/ V ) .\/ W ) ) )
26 25 22 eqeq12d
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( ( P .\/ U ) .\/ ( V .\/ W ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) <-> ( P .\/ ( ( U .\/ V ) .\/ W ) ) = ( T .\/ ( ( U .\/ V ) .\/ W ) ) ) )
27 20 23 26 3bitr4d
 |-  ( ( ( K e. HL /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) -> ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) <-> ( ( P .\/ U ) .\/ ( V .\/ W ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) )