Metamath Proof Explorer


Theorem 60lcm7e420

Description: The lcm of 60 and 7 is 420. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion 60lcm7e420
|- ( ; 6 0 lcm 7 ) = ; ; 4 2 0

Proof

Step Hyp Ref Expression
1 6nn
 |-  6 e. NN
2 1 decnncl2
 |-  ; 6 0 e. NN
3 7nn
 |-  7 e. NN
4 1nn
 |-  1 e. NN
5 4nn0
 |-  4 e. NN0
6 2nn
 |-  2 e. NN
7 5 6 decnncl
 |-  ; 4 2 e. NN
8 7 decnncl2
 |-  ; ; 4 2 0 e. NN
9 60gcd7e1
 |-  ( ; 6 0 gcd 7 ) = 1
10 2nn0
 |-  2 e. NN0
11 5 10 deccl
 |-  ; 4 2 e. NN0
12 0nn0
 |-  0 e. NN0
13 11 12 deccl
 |-  ; ; 4 2 0 e. NN0
14 13 nn0cni
 |-  ; ; 4 2 0 e. CC
15 14 mulid2i
 |-  ( 1 x. ; ; 4 2 0 ) = ; ; 4 2 0
16 7nn0
 |-  7 e. NN0
17 6nn0
 |-  6 e. NN0
18 eqid
 |-  ; 6 0 = ; 6 0
19 7cn
 |-  7 e. CC
20 6cn
 |-  6 e. CC
21 7t6e42
 |-  ( 7 x. 6 ) = ; 4 2
22 19 20 21 mulcomli
 |-  ( 6 x. 7 ) = ; 4 2
23 2cn
 |-  2 e. CC
24 23 addid1i
 |-  ( 2 + 0 ) = 2
25 5 10 12 22 24 decaddi
 |-  ( ( 6 x. 7 ) + 0 ) = ; 4 2
26 0cn
 |-  0 e. CC
27 19 mul01i
 |-  ( 7 x. 0 ) = 0
28 12 dec0h
 |-  0 = ; 0 0
29 28 eqcomi
 |-  ; 0 0 = 0
30 27 29 eqtr4i
 |-  ( 7 x. 0 ) = ; 0 0
31 19 26 30 mulcomli
 |-  ( 0 x. 7 ) = ; 0 0
32 16 17 12 18 12 12 25 31 decmul1c
 |-  ( ; 6 0 x. 7 ) = ; ; 4 2 0
33 2 3 4 8 9 15 32 lcmeprodgcdi
 |-  ( ; 6 0 lcm 7 ) = ; ; 4 2 0