| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfac1.b |
|- B = ( Base ` G ) |
| 2 |
|
ablfac1.o |
|- O = ( od ` G ) |
| 3 |
|
ablfac1.s |
|- S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
| 4 |
|
ablfac1.g |
|- ( ph -> G e. Abel ) |
| 5 |
|
ablfac1.f |
|- ( ph -> B e. Fin ) |
| 6 |
|
ablfac1.1 |
|- ( ph -> A C_ Prime ) |
| 7 |
|
ablfac1.m |
|- M = ( P ^ ( P pCnt ( # ` B ) ) ) |
| 8 |
|
ablfac1.n |
|- N = ( ( # ` B ) / M ) |
| 9 |
6
|
sselda |
|- ( ( ph /\ P e. A ) -> P e. Prime ) |
| 10 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 11 |
9 10
|
syl |
|- ( ( ph /\ P e. A ) -> P e. NN ) |
| 12 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 13 |
1
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
| 14 |
4 12 13
|
3syl |
|- ( ph -> B =/= (/) ) |
| 15 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 16 |
5 15
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 17 |
14 16
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ P e. A ) -> ( # ` B ) e. NN ) |
| 19 |
9 18
|
pccld |
|- ( ( ph /\ P e. A ) -> ( P pCnt ( # ` B ) ) e. NN0 ) |
| 20 |
11 19
|
nnexpcld |
|- ( ( ph /\ P e. A ) -> ( P ^ ( P pCnt ( # ` B ) ) ) e. NN ) |
| 21 |
7 20
|
eqeltrid |
|- ( ( ph /\ P e. A ) -> M e. NN ) |
| 22 |
|
pcdvds |
|- ( ( P e. Prime /\ ( # ` B ) e. NN ) -> ( P ^ ( P pCnt ( # ` B ) ) ) || ( # ` B ) ) |
| 23 |
9 18 22
|
syl2anc |
|- ( ( ph /\ P e. A ) -> ( P ^ ( P pCnt ( # ` B ) ) ) || ( # ` B ) ) |
| 24 |
7 23
|
eqbrtrid |
|- ( ( ph /\ P e. A ) -> M || ( # ` B ) ) |
| 25 |
|
nndivdvds |
|- ( ( ( # ` B ) e. NN /\ M e. NN ) -> ( M || ( # ` B ) <-> ( ( # ` B ) / M ) e. NN ) ) |
| 26 |
18 21 25
|
syl2anc |
|- ( ( ph /\ P e. A ) -> ( M || ( # ` B ) <-> ( ( # ` B ) / M ) e. NN ) ) |
| 27 |
24 26
|
mpbid |
|- ( ( ph /\ P e. A ) -> ( ( # ` B ) / M ) e. NN ) |
| 28 |
8 27
|
eqeltrid |
|- ( ( ph /\ P e. A ) -> N e. NN ) |
| 29 |
21 28
|
jca |
|- ( ( ph /\ P e. A ) -> ( M e. NN /\ N e. NN ) ) |
| 30 |
7
|
oveq1i |
|- ( M gcd N ) = ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd N ) |
| 31 |
|
pcndvds2 |
|- ( ( P e. Prime /\ ( # ` B ) e. NN ) -> -. P || ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) |
| 32 |
9 18 31
|
syl2anc |
|- ( ( ph /\ P e. A ) -> -. P || ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) |
| 33 |
7
|
oveq2i |
|- ( ( # ` B ) / M ) = ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 34 |
8 33
|
eqtri |
|- N = ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 35 |
34
|
breq2i |
|- ( P || N <-> P || ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) |
| 36 |
32 35
|
sylnibr |
|- ( ( ph /\ P e. A ) -> -. P || N ) |
| 37 |
28
|
nnzd |
|- ( ( ph /\ P e. A ) -> N e. ZZ ) |
| 38 |
|
coprm |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N <-> ( P gcd N ) = 1 ) ) |
| 39 |
9 37 38
|
syl2anc |
|- ( ( ph /\ P e. A ) -> ( -. P || N <-> ( P gcd N ) = 1 ) ) |
| 40 |
36 39
|
mpbid |
|- ( ( ph /\ P e. A ) -> ( P gcd N ) = 1 ) |
| 41 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 42 |
9 41
|
syl |
|- ( ( ph /\ P e. A ) -> P e. ZZ ) |
| 43 |
|
rpexp1i |
|- ( ( P e. ZZ /\ N e. ZZ /\ ( P pCnt ( # ` B ) ) e. NN0 ) -> ( ( P gcd N ) = 1 -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd N ) = 1 ) ) |
| 44 |
42 37 19 43
|
syl3anc |
|- ( ( ph /\ P e. A ) -> ( ( P gcd N ) = 1 -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd N ) = 1 ) ) |
| 45 |
40 44
|
mpd |
|- ( ( ph /\ P e. A ) -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd N ) = 1 ) |
| 46 |
30 45
|
eqtrid |
|- ( ( ph /\ P e. A ) -> ( M gcd N ) = 1 ) |
| 47 |
8
|
oveq2i |
|- ( M x. N ) = ( M x. ( ( # ` B ) / M ) ) |
| 48 |
18
|
nncnd |
|- ( ( ph /\ P e. A ) -> ( # ` B ) e. CC ) |
| 49 |
21
|
nncnd |
|- ( ( ph /\ P e. A ) -> M e. CC ) |
| 50 |
21
|
nnne0d |
|- ( ( ph /\ P e. A ) -> M =/= 0 ) |
| 51 |
48 49 50
|
divcan2d |
|- ( ( ph /\ P e. A ) -> ( M x. ( ( # ` B ) / M ) ) = ( # ` B ) ) |
| 52 |
47 51
|
eqtr2id |
|- ( ( ph /\ P e. A ) -> ( # ` B ) = ( M x. N ) ) |
| 53 |
29 46 52
|
3jca |
|- ( ( ph /\ P e. A ) -> ( ( M e. NN /\ N e. NN ) /\ ( M gcd N ) = 1 /\ ( # ` B ) = ( M x. N ) ) ) |