Metamath Proof Explorer


Theorem ablfac1lem

Description: Lemma for ablfac1b . Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B = Base G
ablfac1.o O = od G
ablfac1.s S = p A x B | O x p p pCnt B
ablfac1.g φ G Abel
ablfac1.f φ B Fin
ablfac1.1 φ A
ablfac1.m M = P P pCnt B
ablfac1.n N = B M
Assertion ablfac1lem φ P A M N M gcd N = 1 B = M N

Proof

Step Hyp Ref Expression
1 ablfac1.b B = Base G
2 ablfac1.o O = od G
3 ablfac1.s S = p A x B | O x p p pCnt B
4 ablfac1.g φ G Abel
5 ablfac1.f φ B Fin
6 ablfac1.1 φ A
7 ablfac1.m M = P P pCnt B
8 ablfac1.n N = B M
9 6 sselda φ P A P
10 prmnn P P
11 9 10 syl φ P A P
12 ablgrp G Abel G Grp
13 1 grpbn0 G Grp B
14 4 12 13 3syl φ B
15 hashnncl B Fin B B
16 5 15 syl φ B B
17 14 16 mpbird φ B
18 17 adantr φ P A B
19 9 18 pccld φ P A P pCnt B 0
20 11 19 nnexpcld φ P A P P pCnt B
21 7 20 eqeltrid φ P A M
22 pcdvds P B P P pCnt B B
23 9 18 22 syl2anc φ P A P P pCnt B B
24 7 23 eqbrtrid φ P A M B
25 nndivdvds B M M B B M
26 18 21 25 syl2anc φ P A M B B M
27 24 26 mpbid φ P A B M
28 8 27 eqeltrid φ P A N
29 21 28 jca φ P A M N
30 7 oveq1i M gcd N = P P pCnt B gcd N
31 pcndvds2 P B ¬ P B P P pCnt B
32 9 18 31 syl2anc φ P A ¬ P B P P pCnt B
33 7 oveq2i B M = B P P pCnt B
34 8 33 eqtri N = B P P pCnt B
35 34 breq2i P N P B P P pCnt B
36 32 35 sylnibr φ P A ¬ P N
37 28 nnzd φ P A N
38 coprm P N ¬ P N P gcd N = 1
39 9 37 38 syl2anc φ P A ¬ P N P gcd N = 1
40 36 39 mpbid φ P A P gcd N = 1
41 prmz P P
42 9 41 syl φ P A P
43 rpexp1i P N P pCnt B 0 P gcd N = 1 P P pCnt B gcd N = 1
44 42 37 19 43 syl3anc φ P A P gcd N = 1 P P pCnt B gcd N = 1
45 40 44 mpd φ P A P P pCnt B gcd N = 1
46 30 45 syl5eq φ P A M gcd N = 1
47 8 oveq2i M N = M B M
48 18 nncnd φ P A B
49 21 nncnd φ P A M
50 21 nnne0d φ P A M 0
51 48 49 50 divcan2d φ P A M B M = B
52 47 51 syl5req φ P A B = M N
53 29 46 52 3jca φ P A M N M gcd N = 1 B = M N