| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abldiv.1 |
|- X = ran G |
| 2 |
|
abldiv.3 |
|- D = ( /g ` G ) |
| 3 |
|
id |
|- ( ( A e. X /\ A e. X /\ B e. X ) -> ( A e. X /\ A e. X /\ B e. X ) ) |
| 4 |
3
|
3anidm12 |
|- ( ( A e. X /\ B e. X ) -> ( A e. X /\ A e. X /\ B e. X ) ) |
| 5 |
1 2
|
ablodivdiv |
|- ( ( G e. AbelOp /\ ( A e. X /\ A e. X /\ B e. X ) ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) |
| 6 |
4 5
|
sylan2 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) |
| 7 |
6
|
3impb |
|- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) |
| 8 |
|
ablogrpo |
|- ( G e. AbelOp -> G e. GrpOp ) |
| 9 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
| 10 |
1 2 9
|
grpodivid |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = ( GId ` G ) ) |
| 11 |
8 10
|
sylan |
|- ( ( G e. AbelOp /\ A e. X ) -> ( A D A ) = ( GId ` G ) ) |
| 12 |
11
|
3adant3 |
|- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D A ) = ( GId ` G ) ) |
| 13 |
12
|
oveq1d |
|- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( ( A D A ) G B ) = ( ( GId ` G ) G B ) ) |
| 14 |
1 9
|
grpolid |
|- ( ( G e. GrpOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) |
| 15 |
8 14
|
sylan |
|- ( ( G e. AbelOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) |
| 16 |
15
|
3adant2 |
|- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) |
| 17 |
7 13 16
|
3eqtrd |
|- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D ( A D B ) ) = B ) |