Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.
Remark: This theorem, together with addsq2reu , shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu ). For more details see comment for addsqnreup . (Contributed by AV, 20-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsqrexnreu | |- ( C e. CC -> E. a e. CC -. E! b e. CC ( a + ( b ^ 2 ) ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2cnm | |- ( C e. CC -> ( C - 1 ) e. CC ) |
|
| 2 | oveq1 | |- ( a = ( C - 1 ) -> ( a + ( b ^ 2 ) ) = ( ( C - 1 ) + ( b ^ 2 ) ) ) |
|
| 3 | 2 | eqeq1d | |- ( a = ( C - 1 ) -> ( ( a + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) |
| 4 | 3 | reubidv | |- ( a = ( C - 1 ) -> ( E! b e. CC ( a + ( b ^ 2 ) ) = C <-> E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) |
| 5 | 4 | notbid | |- ( a = ( C - 1 ) -> ( -. E! b e. CC ( a + ( b ^ 2 ) ) = C <-> -. E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) |
| 6 | 5 | adantl | |- ( ( C e. CC /\ a = ( C - 1 ) ) -> ( -. E! b e. CC ( a + ( b ^ 2 ) ) = C <-> -. E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | neg1cn | |- -u 1 e. CC |
|
| 9 | 1nn | |- 1 e. NN |
|
| 10 | nnneneg | |- ( 1 e. NN -> 1 =/= -u 1 ) |
|
| 11 | 9 10 | ax-mp | |- 1 =/= -u 1 |
| 12 | 7 8 11 | 3pm3.2i | |- ( 1 e. CC /\ -u 1 e. CC /\ 1 =/= -u 1 ) |
| 13 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 14 | 13 | eqcomi | |- 1 = ( 1 ^ 2 ) |
| 15 | neg1sqe1 | |- ( -u 1 ^ 2 ) = 1 |
|
| 16 | 15 | eqcomi | |- 1 = ( -u 1 ^ 2 ) |
| 17 | 14 16 | pm3.2i | |- ( 1 = ( 1 ^ 2 ) /\ 1 = ( -u 1 ^ 2 ) ) |
| 18 | oveq1 | |- ( b = 1 -> ( b ^ 2 ) = ( 1 ^ 2 ) ) |
|
| 19 | 18 | eqeq2d | |- ( b = 1 -> ( 1 = ( b ^ 2 ) <-> 1 = ( 1 ^ 2 ) ) ) |
| 20 | oveq1 | |- ( b = -u 1 -> ( b ^ 2 ) = ( -u 1 ^ 2 ) ) |
|
| 21 | 20 | eqeq2d | |- ( b = -u 1 -> ( 1 = ( b ^ 2 ) <-> 1 = ( -u 1 ^ 2 ) ) ) |
| 22 | 19 21 | 2nreu | |- ( ( 1 e. CC /\ -u 1 e. CC /\ 1 =/= -u 1 ) -> ( ( 1 = ( 1 ^ 2 ) /\ 1 = ( -u 1 ^ 2 ) ) -> -. E! b e. CC 1 = ( b ^ 2 ) ) ) |
| 23 | 12 17 22 | mp2 | |- -. E! b e. CC 1 = ( b ^ 2 ) |
| 24 | simpl | |- ( ( C e. CC /\ b e. CC ) -> C e. CC ) |
|
| 25 | 1 | adantr | |- ( ( C e. CC /\ b e. CC ) -> ( C - 1 ) e. CC ) |
| 26 | sqcl | |- ( b e. CC -> ( b ^ 2 ) e. CC ) |
|
| 27 | 26 | adantl | |- ( ( C e. CC /\ b e. CC ) -> ( b ^ 2 ) e. CC ) |
| 28 | 24 25 27 | subaddd | |- ( ( C e. CC /\ b e. CC ) -> ( ( C - ( C - 1 ) ) = ( b ^ 2 ) <-> ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) |
| 29 | id | |- ( C e. CC -> C e. CC ) |
|
| 30 | 1cnd | |- ( C e. CC -> 1 e. CC ) |
|
| 31 | 29 30 | nncand | |- ( C e. CC -> ( C - ( C - 1 ) ) = 1 ) |
| 32 | 31 | adantr | |- ( ( C e. CC /\ b e. CC ) -> ( C - ( C - 1 ) ) = 1 ) |
| 33 | 32 | eqeq1d | |- ( ( C e. CC /\ b e. CC ) -> ( ( C - ( C - 1 ) ) = ( b ^ 2 ) <-> 1 = ( b ^ 2 ) ) ) |
| 34 | 28 33 | bitr3d | |- ( ( C e. CC /\ b e. CC ) -> ( ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> 1 = ( b ^ 2 ) ) ) |
| 35 | 34 | reubidva | |- ( C e. CC -> ( E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> E! b e. CC 1 = ( b ^ 2 ) ) ) |
| 36 | 23 35 | mtbiri | |- ( C e. CC -> -. E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) |
| 37 | 1 6 36 | rspcedvd | |- ( C e. CC -> E. a e. CC -. E! b e. CC ( a + ( b ^ 2 ) ) = C ) |