| Step |
Hyp |
Ref |
Expression |
| 1 |
|
adjbdln |
|- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |
| 2 |
|
bdopadj |
|- ( ( adjh ` T ) e. BndLinOp -> ( adjh ` T ) e. dom adjh ) |
| 3 |
|
dmadjrnb |
|- ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh ) |
| 4 |
2 3
|
sylibr |
|- ( ( adjh ` T ) e. BndLinOp -> T e. dom adjh ) |
| 5 |
|
cnvadj |
|- `' adjh = adjh |
| 6 |
5
|
fveq1i |
|- ( `' adjh ` ( adjh ` T ) ) = ( adjh ` ( adjh ` T ) ) |
| 7 |
|
adj1o |
|- adjh : dom adjh -1-1-onto-> dom adjh |
| 8 |
|
simpl |
|- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> T e. dom adjh ) |
| 9 |
|
f1ocnvfv1 |
|- ( ( adjh : dom adjh -1-1-onto-> dom adjh /\ T e. dom adjh ) -> ( `' adjh ` ( adjh ` T ) ) = T ) |
| 10 |
7 8 9
|
sylancr |
|- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> ( `' adjh ` ( adjh ` T ) ) = T ) |
| 11 |
6 10
|
eqtr3id |
|- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> ( adjh ` ( adjh ` T ) ) = T ) |
| 12 |
|
adjbdln |
|- ( ( adjh ` T ) e. BndLinOp -> ( adjh ` ( adjh ` T ) ) e. BndLinOp ) |
| 13 |
12
|
adantl |
|- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> ( adjh ` ( adjh ` T ) ) e. BndLinOp ) |
| 14 |
11 13
|
eqeltrrd |
|- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> T e. BndLinOp ) |
| 15 |
4 14
|
mpancom |
|- ( ( adjh ` T ) e. BndLinOp -> T e. BndLinOp ) |
| 16 |
1 15
|
impbii |
|- ( T e. BndLinOp <-> ( adjh ` T ) e. BndLinOp ) |