Metamath Proof Explorer


Theorem adjbdlnb

Description: An operator is bounded and linear iff its adjoint is. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjbdlnb T BndLinOp adj h T BndLinOp

Proof

Step Hyp Ref Expression
1 adjbdln T BndLinOp adj h T BndLinOp
2 bdopadj adj h T BndLinOp adj h T dom adj h
3 dmadjrnb T dom adj h adj h T dom adj h
4 2 3 sylibr adj h T BndLinOp T dom adj h
5 cnvadj adj h -1 = adj h
6 5 fveq1i adj h -1 adj h T = adj h adj h T
7 adj1o adj h : dom adj h 1-1 onto dom adj h
8 simpl T dom adj h adj h T BndLinOp T dom adj h
9 f1ocnvfv1 adj h : dom adj h 1-1 onto dom adj h T dom adj h adj h -1 adj h T = T
10 7 8 9 sylancr T dom adj h adj h T BndLinOp adj h -1 adj h T = T
11 6 10 syl5eqr T dom adj h adj h T BndLinOp adj h adj h T = T
12 adjbdln adj h T BndLinOp adj h adj h T BndLinOp
13 12 adantl T dom adj h adj h T BndLinOp adj h adj h T BndLinOp
14 11 13 eqeltrrd T dom adj h adj h T BndLinOp T BndLinOp
15 4 14 mpancom adj h T BndLinOp T BndLinOp
16 1 15 impbii T BndLinOp adj h T BndLinOp