Metamath Proof Explorer


Theorem cnvadj

Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvadj adjh-1=adjh

Proof

Step Hyp Ref Expression
1 cnvopab ut|u:t:xyxihuy=txihy-1=tu|u:t:xyxihuy=txihy
2 3ancoma u:t:xyxihuy=txihyt:u:xyxihuy=txihy
3 ffvelcdm u:yuy
4 ax-his1 uyxuyihx=xihuy
5 3 4 sylan u:yxuyihx=xihuy
6 5 adantrl u:yt:xuyihx=xihuy
7 ffvelcdm t:xtx
8 ax-his1 ytxyihtx=txihy
9 7 8 sylan2 yt:xyihtx=txihy
10 9 adantll u:yt:xyihtx=txihy
11 6 10 eqeq12d u:yt:xuyihx=yihtxxihuy=txihy
12 11 ancoms t:xu:yuyihx=yihtxxihuy=txihy
13 hicl xuyxihuy
14 3 13 sylan2 xu:yxihuy
15 14 adantll t:xu:yxihuy
16 hicl txytxihy
17 7 16 sylan t:xytxihy
18 17 adantrl t:xu:ytxihy
19 cj11 xihuytxihyxihuy=txihyxihuy=txihy
20 15 18 19 syl2anc t:xu:yxihuy=txihyxihuy=txihy
21 12 20 bitr2d t:xu:yxihuy=txihyuyihx=yihtx
22 21 an4s t:u:xyxihuy=txihyuyihx=yihtx
23 22 anassrs t:u:xyxihuy=txihyuyihx=yihtx
24 eqcom uyihx=yihtxyihtx=uyihx
25 23 24 bitrdi t:u:xyxihuy=txihyyihtx=uyihx
26 25 ralbidva t:u:xyxihuy=txihyyyihtx=uyihx
27 26 ralbidva t:u:xyxihuy=txihyxyyihtx=uyihx
28 ralcom xyyihtx=uyihxyxyihtx=uyihx
29 27 28 bitrdi t:u:xyxihuy=txihyyxyihtx=uyihx
30 29 pm5.32i t:u:xyxihuy=txihyt:u:yxyihtx=uyihx
31 df-3an t:u:xyxihuy=txihyt:u:xyxihuy=txihy
32 df-3an t:u:yxyihtx=uyihxt:u:yxyihtx=uyihx
33 30 31 32 3bitr4i t:u:xyxihuy=txihyt:u:yxyihtx=uyihx
34 2 33 bitri u:t:xyxihuy=txihyt:u:yxyihtx=uyihx
35 34 opabbii tu|u:t:xyxihuy=txihy=tu|t:u:yxyihtx=uyihx
36 1 35 eqtri ut|u:t:xyxihuy=txihy-1=tu|t:u:yxyihtx=uyihx
37 dfadj2 adjh=ut|u:t:xyxihuy=txihy
38 37 cnveqi adjh-1=ut|u:t:xyxihuy=txihy-1
39 dfadj2 adjh=tu|t:u:yxyihtx=uyihx
40 36 38 39 3eqtr4i adjh-1=adjh