| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imaco |  |-  ( ( F o. G ) " { X } ) = ( F " ( G " { X } ) ) | 
						
							| 2 |  | dfatsnafv2 |  |-  ( G defAt X -> { ( G '''' X ) } = ( G " { X } ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> { ( G '''' X ) } = ( G " { X } ) ) | 
						
							| 4 | 3 | imaeq2d |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( F " { ( G '''' X ) } ) = ( F " ( G " { X } ) ) ) | 
						
							| 5 | 1 4 | eqtr4id |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( ( F o. G ) " { X } ) = ( F " { ( G '''' X ) } ) ) | 
						
							| 6 | 5 | eleq2d |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( x e. ( ( F o. G ) " { X } ) <-> x e. ( F " { ( G '''' X ) } ) ) ) | 
						
							| 7 | 6 | iotabidv |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( iota x x e. ( ( F o. G ) " { X } ) ) = ( iota x x e. ( F " { ( G '''' X ) } ) ) ) | 
						
							| 8 |  | dfatco |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( F o. G ) defAt X ) | 
						
							| 9 |  | dfafv23 |  |-  ( ( F o. G ) defAt X -> ( ( F o. G ) '''' X ) = ( iota x x e. ( ( F o. G ) " { X } ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( ( F o. G ) '''' X ) = ( iota x x e. ( ( F o. G ) " { X } ) ) ) | 
						
							| 11 |  | dfafv23 |  |-  ( F defAt ( G '''' X ) -> ( F '''' ( G '''' X ) ) = ( iota x x e. ( F " { ( G '''' X ) } ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( F '''' ( G '''' X ) ) = ( iota x x e. ( F " { ( G '''' X ) } ) ) ) | 
						
							| 13 | 7 10 12 | 3eqtr4d |  |-  ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( ( F o. G ) '''' X ) = ( F '''' ( G '''' X ) ) ) |