Step |
Hyp |
Ref |
Expression |
1 |
|
imaco |
|- ( ( F o. G ) " { X } ) = ( F " ( G " { X } ) ) |
2 |
|
dfatsnafv2 |
|- ( G defAt X -> { ( G '''' X ) } = ( G " { X } ) ) |
3 |
2
|
adantr |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> { ( G '''' X ) } = ( G " { X } ) ) |
4 |
3
|
imaeq2d |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( F " { ( G '''' X ) } ) = ( F " ( G " { X } ) ) ) |
5 |
1 4
|
eqtr4id |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( ( F o. G ) " { X } ) = ( F " { ( G '''' X ) } ) ) |
6 |
5
|
eleq2d |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( x e. ( ( F o. G ) " { X } ) <-> x e. ( F " { ( G '''' X ) } ) ) ) |
7 |
6
|
iotabidv |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( iota x x e. ( ( F o. G ) " { X } ) ) = ( iota x x e. ( F " { ( G '''' X ) } ) ) ) |
8 |
|
dfatco |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( F o. G ) defAt X ) |
9 |
|
dfafv23 |
|- ( ( F o. G ) defAt X -> ( ( F o. G ) '''' X ) = ( iota x x e. ( ( F o. G ) " { X } ) ) ) |
10 |
8 9
|
syl |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( ( F o. G ) '''' X ) = ( iota x x e. ( ( F o. G ) " { X } ) ) ) |
11 |
|
dfafv23 |
|- ( F defAt ( G '''' X ) -> ( F '''' ( G '''' X ) ) = ( iota x x e. ( F " { ( G '''' X ) } ) ) ) |
12 |
11
|
adantl |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( F '''' ( G '''' X ) ) = ( iota x x e. ( F " { ( G '''' X ) } ) ) ) |
13 |
7 10 12
|
3eqtr4d |
|- ( ( G defAt X /\ F defAt ( G '''' X ) ) -> ( ( F o. G ) '''' X ) = ( F '''' ( G '''' X ) ) ) |