| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imaco | ⊢ ( ( 𝐹  ∘  𝐺 )  “  { 𝑋 } )  =  ( 𝐹  “  ( 𝐺  “  { 𝑋 } ) ) | 
						
							| 2 |  | dfatsnafv2 | ⊢ ( 𝐺  defAt  𝑋  →  { ( 𝐺 '''' 𝑋 ) }  =  ( 𝐺  “  { 𝑋 } ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  { ( 𝐺 '''' 𝑋 ) }  =  ( 𝐺  “  { 𝑋 } ) ) | 
						
							| 4 | 3 | imaeq2d | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐹  “  { ( 𝐺 '''' 𝑋 ) } )  =  ( 𝐹  “  ( 𝐺  “  { 𝑋 } ) ) ) | 
						
							| 5 | 1 4 | eqtr4id | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐹  ∘  𝐺 )  “  { 𝑋 } )  =  ( 𝐹  “  { ( 𝐺 '''' 𝑋 ) } ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝑥  ∈  ( ( 𝐹  ∘  𝐺 )  “  { 𝑋 } )  ↔  𝑥  ∈  ( 𝐹  “  { ( 𝐺 '''' 𝑋 ) } ) ) ) | 
						
							| 7 | 6 | iotabidv | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ℩ 𝑥 𝑥  ∈  ( ( 𝐹  ∘  𝐺 )  “  { 𝑋 } ) )  =  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  “  { ( 𝐺 '''' 𝑋 ) } ) ) ) | 
						
							| 8 |  | dfatco | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐹  ∘  𝐺 )  defAt  𝑋 ) | 
						
							| 9 |  | dfafv23 | ⊢ ( ( 𝐹  ∘  𝐺 )  defAt  𝑋  →  ( ( 𝐹  ∘  𝐺 ) '''' 𝑋 )  =  ( ℩ 𝑥 𝑥  ∈  ( ( 𝐹  ∘  𝐺 )  “  { 𝑋 } ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐹  ∘  𝐺 ) '''' 𝑋 )  =  ( ℩ 𝑥 𝑥  ∈  ( ( 𝐹  ∘  𝐺 )  “  { 𝑋 } ) ) ) | 
						
							| 11 |  | dfafv23 | ⊢ ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  →  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  =  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  “  { ( 𝐺 '''' 𝑋 ) } ) ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  =  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  “  { ( 𝐺 '''' 𝑋 ) } ) ) ) | 
						
							| 13 | 7 10 12 | 3eqtr4d | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐹  ∘  𝐺 ) '''' 𝑋 )  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) |