| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimdmafv2.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
rlimdmafv2.2 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 3 |
|
eldmg |
⊢ ( 𝐹 ∈ dom ⇝𝑟 → ( 𝐹 ∈ dom ⇝𝑟 ↔ ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) ) |
| 4 |
3
|
ibi |
⊢ ( 𝐹 ∈ dom ⇝𝑟 → ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 𝑥 ) |
| 6 |
|
rlimrel |
⊢ Rel ⇝𝑟 |
| 7 |
6
|
brrelex1i |
⊢ ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ∈ V ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ∈ V ) |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝑥 ∈ V ) |
| 11 |
|
breldmg |
⊢ ( ( 𝐹 ∈ V ∧ 𝑥 ∈ V ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ∈ dom ⇝𝑟 ) |
| 12 |
8 10 5 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ∈ dom ⇝𝑟 ) |
| 13 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥 ) ) |
| 14 |
13
|
biimprd |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 𝑦 ) ) |
| 15 |
14
|
spimevw |
⊢ ( 𝐹 ⇝𝑟 𝑥 → ∃ 𝑦 𝐹 ⇝𝑟 𝑦 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ∃ 𝑦 𝐹 ⇝𝑟 𝑦 ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 21 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝐹 ⇝𝑟 𝑦 ) |
| 22 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝐹 ⇝𝑟 𝑧 ) |
| 23 |
18 20 21 22
|
rlimuni |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝑦 = 𝑧 ) |
| 24 |
23
|
ex |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 25 |
24
|
alrimivv |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ∀ 𝑦 ∀ 𝑧 ( ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 26 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑧 ) ) |
| 27 |
26
|
eu4 |
⊢ ( ∃! 𝑦 𝐹 ⇝𝑟 𝑦 ↔ ( ∃ 𝑦 𝐹 ⇝𝑟 𝑦 ∧ ∀ 𝑦 ∀ 𝑧 ( ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 28 |
16 25 27
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ∃! 𝑦 𝐹 ⇝𝑟 𝑦 ) |
| 29 |
|
dfdfat2 |
⊢ ( ⇝𝑟 defAt 𝐹 ↔ ( 𝐹 ∈ dom ⇝𝑟 ∧ ∃! 𝑦 𝐹 ⇝𝑟 𝑦 ) ) |
| 30 |
12 28 29
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ⇝𝑟 defAt 𝐹 ) |
| 31 |
|
dfatafv2iota |
⊢ ( ⇝𝑟 defAt 𝐹 → ( ⇝𝑟 '''' 𝐹 ) = ( ℩ 𝑤 𝐹 ⇝𝑟 𝑤 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ⇝𝑟 '''' 𝐹 ) = ( ℩ 𝑤 𝐹 ⇝𝑟 𝑤 ) ) |
| 33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 34 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 35 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝐹 ⇝𝑟 𝑤 ) |
| 36 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝐹 ⇝𝑟 𝑥 ) |
| 37 |
33 34 35 36
|
rlimuni |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝑤 = 𝑥 ) |
| 38 |
37
|
expr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑤 → 𝑤 = 𝑥 ) ) |
| 39 |
|
breq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ⇝𝑟 𝑤 ↔ 𝐹 ⇝𝑟 𝑥 ) ) |
| 40 |
5 39
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝑤 = 𝑥 → 𝐹 ⇝𝑟 𝑤 ) ) |
| 41 |
38 40
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑤 ↔ 𝑤 = 𝑥 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( 𝐹 ⇝𝑟 𝑤 ↔ 𝑤 = 𝑥 ) ) |
| 43 |
42
|
iota5 |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( ℩ 𝑤 𝐹 ⇝𝑟 𝑤 ) = 𝑥 ) |
| 44 |
43
|
elvd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ℩ 𝑤 𝐹 ⇝𝑟 𝑤 ) = 𝑥 ) |
| 45 |
32 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ⇝𝑟 '''' 𝐹 ) = 𝑥 ) |
| 46 |
5 45
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 ( ⇝𝑟 '''' 𝐹 ) ) |
| 47 |
46
|
ex |
⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 '''' 𝐹 ) ) ) |
| 48 |
47
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 '''' 𝐹 ) ) ) |
| 49 |
4 48
|
syl5 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 '''' 𝐹 ) ) ) |
| 50 |
6
|
releldmi |
⊢ ( 𝐹 ⇝𝑟 ( ⇝𝑟 '''' 𝐹 ) → 𝐹 ∈ dom ⇝𝑟 ) |
| 51 |
49 50
|
impbid1 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 '''' 𝐹 ) ) ) |