| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfatcolem | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃! 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) | 
						
							| 2 |  | euex | ⊢ ( ∃! 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦  →  ∃ 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃ 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) | 
						
							| 4 |  | df-dm | ⊢ dom  ( 𝐹  ∘  𝐺 )  =  { 𝑥  ∣  ∃ 𝑦 𝑥 ( 𝐹  ∘  𝐺 ) 𝑦 } | 
						
							| 5 | 4 | eleq2i | ⊢ ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ↔  𝑋  ∈  { 𝑥  ∣  ∃ 𝑦 𝑥 ( 𝐹  ∘  𝐺 ) 𝑦 } ) | 
						
							| 6 |  | df-dfat | ⊢ ( 𝐺  defAt  𝑋  ↔  ( 𝑋  ∈  dom  𝐺  ∧  Fun  ( 𝐺  ↾  { 𝑋 } ) ) ) | 
						
							| 7 | 6 | simplbi | ⊢ ( 𝐺  defAt  𝑋  →  𝑋  ∈  dom  𝐺 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  𝑋  ∈  dom  𝐺 ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 ( 𝐹  ∘  𝐺 ) 𝑦  ↔  𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) ) | 
						
							| 10 | 9 | exbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑦 𝑥 ( 𝐹  ∘  𝐺 ) 𝑦  ↔  ∃ 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) ) | 
						
							| 11 | 10 | elabg | ⊢ ( 𝑋  ∈  dom  𝐺  →  ( 𝑋  ∈  { 𝑥  ∣  ∃ 𝑦 𝑥 ( 𝐹  ∘  𝐺 ) 𝑦 }  ↔  ∃ 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) ) | 
						
							| 12 | 8 11 | syl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝑋  ∈  { 𝑥  ∣  ∃ 𝑦 𝑥 ( 𝐹  ∘  𝐺 ) 𝑦 }  ↔  ∃ 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) ) | 
						
							| 13 | 5 12 | bitrid | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ↔  ∃ 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) ) | 
						
							| 14 | 3 13 | mpbird | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  𝑋  ∈  dom  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 15 |  | dfdfat2 | ⊢ ( ( 𝐹  ∘  𝐺 )  defAt  𝑋  ↔  ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ∧  ∃! 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) ) | 
						
							| 16 | 14 1 15 | sylanbrc | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐹  ∘  𝐺 )  defAt  𝑋 ) |