| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfatcolem |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃! 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) |
| 2 |
|
euex |
⊢ ( ∃! 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 → ∃ 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃ 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) |
| 4 |
|
df-dm |
⊢ dom ( 𝐹 ∘ 𝐺 ) = { 𝑥 ∣ ∃ 𝑦 𝑥 ( 𝐹 ∘ 𝐺 ) 𝑦 } |
| 5 |
4
|
eleq2i |
⊢ ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ 𝑋 ∈ { 𝑥 ∣ ∃ 𝑦 𝑥 ( 𝐹 ∘ 𝐺 ) 𝑦 } ) |
| 6 |
|
df-dfat |
⊢ ( 𝐺 defAt 𝑋 ↔ ( 𝑋 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝑋 } ) ) ) |
| 7 |
6
|
simplbi |
⊢ ( 𝐺 defAt 𝑋 → 𝑋 ∈ dom 𝐺 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → 𝑋 ∈ dom 𝐺 ) |
| 9 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ( 𝐹 ∘ 𝐺 ) 𝑦 ↔ 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) ) |
| 10 |
9
|
exbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑦 𝑥 ( 𝐹 ∘ 𝐺 ) 𝑦 ↔ ∃ 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) ) |
| 11 |
10
|
elabg |
⊢ ( 𝑋 ∈ dom 𝐺 → ( 𝑋 ∈ { 𝑥 ∣ ∃ 𝑦 𝑥 ( 𝐹 ∘ 𝐺 ) 𝑦 } ↔ ∃ 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) ) |
| 12 |
8 11
|
syl |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝑋 ∈ { 𝑥 ∣ ∃ 𝑦 𝑥 ( 𝐹 ∘ 𝐺 ) 𝑦 } ↔ ∃ 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) ) |
| 13 |
5 12
|
bitrid |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ ∃ 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) ) |
| 14 |
3 13
|
mpbird |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ) |
| 15 |
|
dfdfat2 |
⊢ ( ( 𝐹 ∘ 𝐺 ) defAt 𝑋 ↔ ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ ∃! 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) ) |
| 16 |
14 1 15
|
sylanbrc |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝐹 ∘ 𝐺 ) defAt 𝑋 ) |