| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfdfat2 | ⊢ ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  ↔  ( ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹  ∧  ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) | 
						
							| 2 |  | eqidd | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐺 '''' 𝑋 )  =  ( 𝐺 '''' 𝑋 ) ) | 
						
							| 3 |  | df-dfat | ⊢ ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  ↔  ( ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 '''' 𝑋 ) } ) ) ) | 
						
							| 4 | 3 | simplbi | ⊢ ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  →  ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹 ) | 
						
							| 5 |  | dfatbrafv2b | ⊢ ( ( 𝐺  defAt  𝑋  ∧  ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹 )  →  ( ( 𝐺 '''' 𝑋 )  =  ( 𝐺 '''' 𝑋 )  ↔  𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐺 '''' 𝑋 )  =  ( 𝐺 '''' 𝑋 )  ↔  𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) | 
						
							| 7 | 2 6 | mpbid | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  𝐹  defAt  ( 𝐺 '''' 𝑋 ) ) | 
						
							| 10 |  | dfatafv2ex | ⊢ ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  →  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ∈  V ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ∈  V ) | 
						
							| 12 |  | dfatbrafv2b | ⊢ ( ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  ∧  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ∈  V )  →  ( ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ↔  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) | 
						
							| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ↔  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) | 
						
							| 14 | 8 13 | mpbid | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) | 
						
							| 15 | 4 | adantl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹 ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝑧  =  ( 𝐺 '''' 𝑋 )  →  ( 𝑋 𝐺 𝑧  ↔  𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑦  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ∧  𝑧  =  ( 𝐺 '''' 𝑋 ) )  →  ( 𝑋 𝐺 𝑧  ↔  𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) | 
						
							| 18 |  | breq12 | ⊢ ( ( 𝑧  =  ( 𝐺 '''' 𝑋 )  ∧  𝑦  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) )  →  ( 𝑧 𝐹 𝑦  ↔  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) | 
						
							| 19 | 18 | ancoms | ⊢ ( ( 𝑦  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ∧  𝑧  =  ( 𝐺 '''' 𝑋 ) )  →  ( 𝑧 𝐹 𝑦  ↔  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) | 
						
							| 20 | 17 19 | anbi12d | ⊢ ( ( 𝑦  =  ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ∧  𝑧  =  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 )  ↔  ( 𝑋 𝐺 ( 𝐺 '''' 𝑋 )  ∧  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) ) | 
						
							| 21 | 20 | spc2egv | ⊢ ( ( ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) )  ∈  V  ∧  ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹 )  →  ( ( 𝑋 𝐺 ( 𝐺 '''' 𝑋 )  ∧  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) )  →  ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 22 | 11 15 21 | syl2anc | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝑋 𝐺 ( 𝐺 '''' 𝑋 )  ∧  ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) )  →  ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 23 | 7 14 22 | mp2and | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) | 
						
							| 24 |  | dfdfat2 | ⊢ ( 𝐺  defAt  𝑋  ↔  ( 𝑋  ∈  dom  𝐺  ∧  ∃! 𝑧 𝑋 𝐺 𝑧 ) ) | 
						
							| 25 |  | tz6.12c-afv2 | ⊢ ( ∃! 𝑧 𝑋 𝐺 𝑧  →  ( ( 𝐺 '''' 𝑋 )  =  𝑧  ↔  𝑋 𝐺 𝑧 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑋  ∈  dom  𝐺  ∧  ∃! 𝑧 𝑋 𝐺 𝑧 )  →  ( ( 𝐺 '''' 𝑋 )  =  𝑧  ↔  𝑋 𝐺 𝑧 ) ) | 
						
							| 27 | 24 26 | sylbi | ⊢ ( 𝐺  defAt  𝑋  →  ( ( 𝐺 '''' 𝑋 )  =  𝑧  ↔  𝑋 𝐺 𝑧 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐺 '''' 𝑋 )  =  𝑧  ↔  𝑋 𝐺 𝑧 ) ) | 
						
							| 29 |  | breq1 | ⊢ ( ( 𝐺 '''' 𝑋 )  =  𝑧  →  ( ( 𝐺 '''' 𝑋 ) 𝐹 𝑦  ↔  𝑧 𝐹 𝑦 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  ∧  ( 𝐺 '''' 𝑋 )  =  𝑧 )  →  ( ( 𝐺 '''' 𝑋 ) 𝐹 𝑦  ↔  𝑧 𝐹 𝑦 ) ) | 
						
							| 31 | 30 | exbiri | ⊢ ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  →  ( ( 𝐺 '''' 𝑋 )  =  𝑧  →  ( 𝑧 𝐹 𝑦  →  ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐺 '''' 𝑋 )  =  𝑧  →  ( 𝑧 𝐹 𝑦  →  ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) ) | 
						
							| 33 | 28 32 | sylbird | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝑋 𝐺 𝑧  →  ( 𝑧 𝐹 𝑦  →  ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) ) | 
						
							| 34 | 33 | impd | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 )  →  ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) | 
						
							| 35 | 34 | exlimdv | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 )  →  ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) | 
						
							| 36 | 35 | alrimiv | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∀ 𝑦 ( ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 )  →  ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) | 
						
							| 37 |  | euim | ⊢ ( ( ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 )  ∧  ∀ 𝑦 ( ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 )  →  ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) )  →  ( ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦  →  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 38 | 23 36 37 | syl2anc | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦  →  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 39 | 38 | com12 | ⊢ ( ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦  →  ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹  ∧  ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 )  →  ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝐺  defAt  𝑋  ∧  ( ( 𝐺 '''' 𝑋 )  ∈  dom  𝐹  ∧  ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) )  →  ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 42 | 1 41 | sylan2b | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 43 | 42 | pm2.43i | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) | 
						
							| 44 |  | df-dfat | ⊢ ( 𝐺  defAt  𝑋  ↔  ( 𝑋  ∈  dom  𝐺  ∧  Fun  ( 𝐺  ↾  { 𝑋 } ) ) ) | 
						
							| 45 | 44 | simplbi | ⊢ ( 𝐺  defAt  𝑋  →  𝑋  ∈  dom  𝐺 ) | 
						
							| 46 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 47 | 46 | a1i | ⊢ ( 𝐹  defAt  ( 𝐺 '''' 𝑋 )  →  𝑦  ∈  V ) | 
						
							| 48 |  | brcog | ⊢ ( ( 𝑋  ∈  dom  𝐺  ∧  𝑦  ∈  V )  →  ( 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦  ↔  ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 49 | 45 47 48 | syl2an | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦  ↔  ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 50 | 49 | eubidv | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ( ∃! 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦  ↔  ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧  ∧  𝑧 𝐹 𝑦 ) ) ) | 
						
							| 51 | 43 50 | mpbird | ⊢ ( ( 𝐺  defAt  𝑋  ∧  𝐹  defAt  ( 𝐺 '''' 𝑋 ) )  →  ∃! 𝑦 𝑋 ( 𝐹  ∘  𝐺 ) 𝑦 ) |