Step |
Hyp |
Ref |
Expression |
1 |
|
dfdfat2 |
⊢ ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) ↔ ( ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ∧ ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) |
2 |
|
eqidd |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝐺 '''' 𝑋 ) = ( 𝐺 '''' 𝑋 ) ) |
3 |
|
df-dfat |
⊢ ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) ↔ ( ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 '''' 𝑋 ) } ) ) ) |
4 |
3
|
simplbi |
⊢ ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) → ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ) |
5 |
|
dfatbrafv2b |
⊢ ( ( 𝐺 defAt 𝑋 ∧ ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ) → ( ( 𝐺 '''' 𝑋 ) = ( 𝐺 '''' 𝑋 ) ↔ 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ( 𝐺 '''' 𝑋 ) = ( 𝐺 '''' 𝑋 ) ↔ 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) |
7 |
2 6
|
mpbid |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) |
8 |
|
eqidd |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) = ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) |
10 |
|
dfatafv2ex |
⊢ ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) → ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ∈ V ) |
11 |
10
|
adantl |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ∈ V ) |
12 |
|
dfatbrafv2b |
⊢ ( ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) ∧ ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ∈ V ) → ( ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) = ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ↔ ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) = ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ↔ ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) |
14 |
8 13
|
mpbid |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) |
15 |
4
|
adantl |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ) |
16 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐺 '''' 𝑋 ) → ( 𝑋 𝐺 𝑧 ↔ 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑦 = ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ∧ 𝑧 = ( 𝐺 '''' 𝑋 ) ) → ( 𝑋 𝐺 𝑧 ↔ 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ) ) |
18 |
|
breq12 |
⊢ ( ( 𝑧 = ( 𝐺 '''' 𝑋 ) ∧ 𝑦 = ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) → ( 𝑧 𝐹 𝑦 ↔ ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝑦 = ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ∧ 𝑧 = ( 𝐺 '''' 𝑋 ) ) → ( 𝑧 𝐹 𝑦 ↔ ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) |
20 |
17 19
|
anbi12d |
⊢ ( ( 𝑦 = ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ∧ 𝑧 = ( 𝐺 '''' 𝑋 ) ) → ( ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ↔ ( 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ∧ ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) ) ) |
21 |
20
|
spc2egv |
⊢ ( ( ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ∈ V ∧ ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ) → ( ( 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ∧ ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) → ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
22 |
11 15 21
|
syl2anc |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ( 𝑋 𝐺 ( 𝐺 '''' 𝑋 ) ∧ ( 𝐺 '''' 𝑋 ) 𝐹 ( 𝐹 '''' ( 𝐺 '''' 𝑋 ) ) ) → ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
23 |
7 14 22
|
mp2and |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) |
24 |
|
dfdfat2 |
⊢ ( 𝐺 defAt 𝑋 ↔ ( 𝑋 ∈ dom 𝐺 ∧ ∃! 𝑧 𝑋 𝐺 𝑧 ) ) |
25 |
|
tz6.12c-afv2 |
⊢ ( ∃! 𝑧 𝑋 𝐺 𝑧 → ( ( 𝐺 '''' 𝑋 ) = 𝑧 ↔ 𝑋 𝐺 𝑧 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑋 ∈ dom 𝐺 ∧ ∃! 𝑧 𝑋 𝐺 𝑧 ) → ( ( 𝐺 '''' 𝑋 ) = 𝑧 ↔ 𝑋 𝐺 𝑧 ) ) |
27 |
24 26
|
sylbi |
⊢ ( 𝐺 defAt 𝑋 → ( ( 𝐺 '''' 𝑋 ) = 𝑧 ↔ 𝑋 𝐺 𝑧 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ( 𝐺 '''' 𝑋 ) = 𝑧 ↔ 𝑋 𝐺 𝑧 ) ) |
29 |
|
breq1 |
⊢ ( ( 𝐺 '''' 𝑋 ) = 𝑧 → ( ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ↔ 𝑧 𝐹 𝑦 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) ∧ ( 𝐺 '''' 𝑋 ) = 𝑧 ) → ( ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ↔ 𝑧 𝐹 𝑦 ) ) |
31 |
30
|
exbiri |
⊢ ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) → ( ( 𝐺 '''' 𝑋 ) = 𝑧 → ( 𝑧 𝐹 𝑦 → ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ( 𝐺 '''' 𝑋 ) = 𝑧 → ( 𝑧 𝐹 𝑦 → ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) ) |
33 |
28 32
|
sylbird |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝑋 𝐺 𝑧 → ( 𝑧 𝐹 𝑦 → ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) ) |
34 |
33
|
impd |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) → ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) |
35 |
34
|
exlimdv |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) → ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) |
36 |
35
|
alrimiv |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∀ 𝑦 ( ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) → ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) |
37 |
|
euim |
⊢ ( ( ∃ 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ∧ ∀ 𝑦 ( ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) → ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) → ( ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 → ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
38 |
23 36 37
|
syl2anc |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 → ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
39 |
38
|
com12 |
⊢ ( ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 → ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ∧ ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) → ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝐺 defAt 𝑋 ∧ ( ( 𝐺 '''' 𝑋 ) ∈ dom 𝐹 ∧ ∃! 𝑦 ( 𝐺 '''' 𝑋 ) 𝐹 𝑦 ) ) → ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
42 |
1 41
|
sylan2b |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
43 |
42
|
pm2.43i |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) |
44 |
|
df-dfat |
⊢ ( 𝐺 defAt 𝑋 ↔ ( 𝑋 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝑋 } ) ) ) |
45 |
44
|
simplbi |
⊢ ( 𝐺 defAt 𝑋 → 𝑋 ∈ dom 𝐺 ) |
46 |
|
vex |
⊢ 𝑦 ∈ V |
47 |
46
|
a1i |
⊢ ( 𝐹 defAt ( 𝐺 '''' 𝑋 ) → 𝑦 ∈ V ) |
48 |
|
brcog |
⊢ ( ( 𝑋 ∈ dom 𝐺 ∧ 𝑦 ∈ V ) → ( 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ↔ ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
49 |
45 47 48
|
syl2an |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ↔ ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
50 |
49
|
eubidv |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ( ∃! 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ↔ ∃! 𝑦 ∃ 𝑧 ( 𝑋 𝐺 𝑧 ∧ 𝑧 𝐹 𝑦 ) ) ) |
51 |
43 50
|
mpbird |
⊢ ( ( 𝐺 defAt 𝑋 ∧ 𝐹 defAt ( 𝐺 '''' 𝑋 ) ) → ∃! 𝑦 𝑋 ( 𝐹 ∘ 𝐺 ) 𝑦 ) |