| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aomclem2.b |  |-  B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } | 
						
							| 2 |  | aomclem2.c |  |-  C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) | 
						
							| 3 |  | aomclem2.on |  |-  ( ph -> dom z e. On ) | 
						
							| 4 |  | aomclem2.su |  |-  ( ph -> dom z = suc U. dom z ) | 
						
							| 5 |  | aomclem2.we |  |-  ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) | 
						
							| 6 |  | aomclem2.a |  |-  ( ph -> A e. On ) | 
						
							| 7 |  | aomclem2.za |  |-  ( ph -> dom z C_ A ) | 
						
							| 8 |  | aomclem2.y |  |-  ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) | 
						
							| 9 |  | vex |  |-  a e. _V | 
						
							| 10 | 3 6 | jca |  |-  ( ph -> ( dom z e. On /\ A e. On ) ) | 
						
							| 11 |  | r1ord3 |  |-  ( ( dom z e. On /\ A e. On ) -> ( dom z C_ A -> ( R1 ` dom z ) C_ ( R1 ` A ) ) ) | 
						
							| 12 | 10 7 11 | sylc |  |-  ( ph -> ( R1 ` dom z ) C_ ( R1 ` A ) ) | 
						
							| 13 | 12 | sspwd |  |-  ( ph -> ~P ( R1 ` dom z ) C_ ~P ( R1 ` A ) ) | 
						
							| 14 | 13 | sseld |  |-  ( ph -> ( a e. ~P ( R1 ` dom z ) -> a e. ~P ( R1 ` A ) ) ) | 
						
							| 15 |  | rsp |  |-  ( A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) -> ( a e. ~P ( R1 ` A ) -> ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) ) | 
						
							| 16 | 8 14 15 | sylsyld |  |-  ( ph -> ( a e. ~P ( R1 ` dom z ) -> ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) ) | 
						
							| 17 | 16 | 3imp |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) | 
						
							| 18 | 17 | eldifad |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) e. ( ~P a i^i Fin ) ) | 
						
							| 19 |  | inss1 |  |-  ( ~P a i^i Fin ) C_ ~P a | 
						
							| 20 | 19 | sseli |  |-  ( ( y ` a ) e. ( ~P a i^i Fin ) -> ( y ` a ) e. ~P a ) | 
						
							| 21 | 20 | elpwid |  |-  ( ( y ` a ) e. ( ~P a i^i Fin ) -> ( y ` a ) C_ a ) | 
						
							| 22 | 18 21 | syl |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) C_ a ) | 
						
							| 23 | 1 3 4 5 | aomclem1 |  |-  ( ph -> B Or ( R1 ` dom z ) ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> B Or ( R1 ` dom z ) ) | 
						
							| 25 |  | inss2 |  |-  ( ~P a i^i Fin ) C_ Fin | 
						
							| 26 | 25 18 | sselid |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) e. Fin ) | 
						
							| 27 |  | eldifsni |  |-  ( ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) -> ( y ` a ) =/= (/) ) | 
						
							| 28 | 17 27 | syl |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) =/= (/) ) | 
						
							| 29 |  | elpwi |  |-  ( a e. ~P ( R1 ` dom z ) -> a C_ ( R1 ` dom z ) ) | 
						
							| 30 | 29 | 3ad2ant2 |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> a C_ ( R1 ` dom z ) ) | 
						
							| 31 | 22 30 | sstrd |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( y ` a ) C_ ( R1 ` dom z ) ) | 
						
							| 32 |  | fisupcl |  |-  ( ( B Or ( R1 ` dom z ) /\ ( ( y ` a ) e. Fin /\ ( y ` a ) =/= (/) /\ ( y ` a ) C_ ( R1 ` dom z ) ) ) -> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. ( y ` a ) ) | 
						
							| 33 | 24 26 28 31 32 | syl13anc |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. ( y ` a ) ) | 
						
							| 34 | 22 33 | sseldd |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. a ) | 
						
							| 35 | 2 | fvmpt2 |  |-  ( ( a e. _V /\ sup ( ( y ` a ) , ( R1 ` dom z ) , B ) e. a ) -> ( C ` a ) = sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) | 
						
							| 36 | 9 34 35 | sylancr |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( C ` a ) = sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) | 
						
							| 37 | 36 34 | eqeltrd |  |-  ( ( ph /\ a e. ~P ( R1 ` dom z ) /\ a =/= (/) ) -> ( C ` a ) e. a ) | 
						
							| 38 | 37 | 3exp |  |-  ( ph -> ( a e. ~P ( R1 ` dom z ) -> ( a =/= (/) -> ( C ` a ) e. a ) ) ) | 
						
							| 39 | 38 | ralrimiv |  |-  ( ph -> A. a e. ~P ( R1 ` dom z ) ( a =/= (/) -> ( C ` a ) e. a ) ) |