Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
|- B = ( Base ` W ) |
2 |
|
archiabllem.0 |
|- .0. = ( 0g ` W ) |
3 |
|
archiabllem.e |
|- .<_ = ( le ` W ) |
4 |
|
archiabllem.t |
|- .< = ( lt ` W ) |
5 |
|
archiabllem.m |
|- .x. = ( .g ` W ) |
6 |
|
archiabllem.g |
|- ( ph -> W e. oGrp ) |
7 |
|
archiabllem.a |
|- ( ph -> W e. Archi ) |
8 |
|
archiabllem2.1 |
|- .+ = ( +g ` W ) |
9 |
|
archiabllem2.2 |
|- ( ph -> ( oppG ` W ) e. oGrp ) |
10 |
|
archiabllem2.3 |
|- ( ( ph /\ a e. B /\ .0. .< a ) -> E. b e. B ( .0. .< b /\ b .< a ) ) |
11 |
|
ogrpgrp |
|- ( W e. oGrp -> W e. Grp ) |
12 |
6 11
|
syl |
|- ( ph -> W e. Grp ) |
13 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> W e. oGrp ) |
14 |
7
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> W e. Archi ) |
15 |
9
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( oppG ` W ) e. oGrp ) |
16 |
|
simp1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> ph ) |
17 |
16 10
|
syl3an1 |
|- ( ( ( ph /\ x e. B /\ y e. B ) /\ a e. B /\ .0. .< a ) -> E. b e. B ( .0. .< b /\ b .< a ) ) |
18 |
|
simp2 |
|- ( ( ph /\ x e. B /\ y e. B ) -> x e. B ) |
19 |
|
simp3 |
|- ( ( ph /\ x e. B /\ y e. B ) -> y e. B ) |
20 |
1 2 3 4 5 13 14 8 15 17 18 19
|
archiabllem2b |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) ) |
21 |
20
|
3expb |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) = ( y .+ x ) ) |
22 |
21
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) |
23 |
1 8
|
isabl2 |
|- ( W e. Abel <-> ( W e. Grp /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
24 |
12 22 23
|
sylanbrc |
|- ( ph -> W e. Abel ) |