Metamath Proof Explorer


Theorem archiabllem2

Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Hypotheses archiabllem.b
|- B = ( Base ` W )
archiabllem.0
|- .0. = ( 0g ` W )
archiabllem.e
|- .<_ = ( le ` W )
archiabllem.t
|- .< = ( lt ` W )
archiabllem.m
|- .x. = ( .g ` W )
archiabllem.g
|- ( ph -> W e. oGrp )
archiabllem.a
|- ( ph -> W e. Archi )
archiabllem2.1
|- .+ = ( +g ` W )
archiabllem2.2
|- ( ph -> ( oppG ` W ) e. oGrp )
archiabllem2.3
|- ( ( ph /\ a e. B /\ .0. .< a ) -> E. b e. B ( .0. .< b /\ b .< a ) )
Assertion archiabllem2
|- ( ph -> W e. Abel )

Proof

Step Hyp Ref Expression
1 archiabllem.b
 |-  B = ( Base ` W )
2 archiabllem.0
 |-  .0. = ( 0g ` W )
3 archiabllem.e
 |-  .<_ = ( le ` W )
4 archiabllem.t
 |-  .< = ( lt ` W )
5 archiabllem.m
 |-  .x. = ( .g ` W )
6 archiabllem.g
 |-  ( ph -> W e. oGrp )
7 archiabllem.a
 |-  ( ph -> W e. Archi )
8 archiabllem2.1
 |-  .+ = ( +g ` W )
9 archiabllem2.2
 |-  ( ph -> ( oppG ` W ) e. oGrp )
10 archiabllem2.3
 |-  ( ( ph /\ a e. B /\ .0. .< a ) -> E. b e. B ( .0. .< b /\ b .< a ) )
11 ogrpgrp
 |-  ( W e. oGrp -> W e. Grp )
12 6 11 syl
 |-  ( ph -> W e. Grp )
13 6 3ad2ant1
 |-  ( ( ph /\ x e. B /\ y e. B ) -> W e. oGrp )
14 7 3ad2ant1
 |-  ( ( ph /\ x e. B /\ y e. B ) -> W e. Archi )
15 9 3ad2ant1
 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( oppG ` W ) e. oGrp )
16 simp1
 |-  ( ( ph /\ x e. B /\ y e. B ) -> ph )
17 16 10 syl3an1
 |-  ( ( ( ph /\ x e. B /\ y e. B ) /\ a e. B /\ .0. .< a ) -> E. b e. B ( .0. .< b /\ b .< a ) )
18 simp2
 |-  ( ( ph /\ x e. B /\ y e. B ) -> x e. B )
19 simp3
 |-  ( ( ph /\ x e. B /\ y e. B ) -> y e. B )
20 1 2 3 4 5 13 14 8 15 17 18 19 archiabllem2b
 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) )
21 20 3expb
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) = ( y .+ x ) )
22 21 ralrimivva
 |-  ( ph -> A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) )
23 1 8 isabl2
 |-  ( W e. Abel <-> ( W e. Grp /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) )
24 12 22 23 sylanbrc
 |-  ( ph -> W e. Abel )