| Step |
Hyp |
Ref |
Expression |
| 1 |
|
archiabllem.b |
|- B = ( Base ` W ) |
| 2 |
|
archiabllem.0 |
|- .0. = ( 0g ` W ) |
| 3 |
|
archiabllem.e |
|- .<_ = ( le ` W ) |
| 4 |
|
archiabllem.t |
|- .< = ( lt ` W ) |
| 5 |
|
archiabllem.m |
|- .x. = ( .g ` W ) |
| 6 |
|
archiabllem.g |
|- ( ph -> W e. oGrp ) |
| 7 |
|
archiabllem.a |
|- ( ph -> W e. Archi ) |
| 8 |
|
archiabllem2.1 |
|- .+ = ( +g ` W ) |
| 9 |
|
archiabllem2.2 |
|- ( ph -> ( oppG ` W ) e. oGrp ) |
| 10 |
|
archiabllem2.3 |
|- ( ( ph /\ a e. B /\ .0. .< a ) -> E. b e. B ( .0. .< b /\ b .< a ) ) |
| 11 |
|
ogrpgrp |
|- ( W e. oGrp -> W e. Grp ) |
| 12 |
6 11
|
syl |
|- ( ph -> W e. Grp ) |
| 13 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> W e. oGrp ) |
| 14 |
7
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> W e. Archi ) |
| 15 |
9
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( oppG ` W ) e. oGrp ) |
| 16 |
|
simp1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> ph ) |
| 17 |
16 10
|
syl3an1 |
|- ( ( ( ph /\ x e. B /\ y e. B ) /\ a e. B /\ .0. .< a ) -> E. b e. B ( .0. .< b /\ b .< a ) ) |
| 18 |
|
simp2 |
|- ( ( ph /\ x e. B /\ y e. B ) -> x e. B ) |
| 19 |
|
simp3 |
|- ( ( ph /\ x e. B /\ y e. B ) -> y e. B ) |
| 20 |
1 2 3 4 5 13 14 8 15 17 18 19
|
archiabllem2b |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) ) |
| 21 |
20
|
3expb |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 22 |
21
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) |
| 23 |
1 8
|
isabl2 |
|- ( W e. Abel <-> ( W e. Grp /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
| 24 |
12 22 23
|
sylanbrc |
|- ( ph -> W e. Abel ) |