Metamath Proof Explorer


Theorem archiabllem2

Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Hypotheses archiabllem.b B = Base W
archiabllem.0 0 ˙ = 0 W
archiabllem.e ˙ = W
archiabllem.t < ˙ = < W
archiabllem.m · ˙ = W
archiabllem.g φ W oGrp
archiabllem.a φ W Archi
archiabllem2.1 + ˙ = + W
archiabllem2.2 φ opp 𝑔 W oGrp
archiabllem2.3 φ a B 0 ˙ < ˙ a b B 0 ˙ < ˙ b b < ˙ a
Assertion archiabllem2 φ W Abel

Proof

Step Hyp Ref Expression
1 archiabllem.b B = Base W
2 archiabllem.0 0 ˙ = 0 W
3 archiabllem.e ˙ = W
4 archiabllem.t < ˙ = < W
5 archiabllem.m · ˙ = W
6 archiabllem.g φ W oGrp
7 archiabllem.a φ W Archi
8 archiabllem2.1 + ˙ = + W
9 archiabllem2.2 φ opp 𝑔 W oGrp
10 archiabllem2.3 φ a B 0 ˙ < ˙ a b B 0 ˙ < ˙ b b < ˙ a
11 ogrpgrp W oGrp W Grp
12 6 11 syl φ W Grp
13 6 3ad2ant1 φ x B y B W oGrp
14 7 3ad2ant1 φ x B y B W Archi
15 9 3ad2ant1 φ x B y B opp 𝑔 W oGrp
16 simp1 φ x B y B φ
17 16 10 syl3an1 φ x B y B a B 0 ˙ < ˙ a b B 0 ˙ < ˙ b b < ˙ a
18 simp2 φ x B y B x B
19 simp3 φ x B y B y B
20 1 2 3 4 5 13 14 8 15 17 18 19 archiabllem2b φ x B y B x + ˙ y = y + ˙ x
21 20 3expb φ x B y B x + ˙ y = y + ˙ x
22 21 ralrimivva φ x B y B x + ˙ y = y + ˙ x
23 1 8 isabl2 W Abel W Grp x B y B x + ˙ y = y + ˙ x
24 12 22 23 sylanbrc φ W Abel