Metamath Proof Explorer


Theorem archiabllem2

Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Hypotheses archiabllem.b B=BaseW
archiabllem.0 0˙=0W
archiabllem.e ˙=W
archiabllem.t <˙=<W
archiabllem.m ·˙=W
archiabllem.g φWoGrp
archiabllem.a φWArchi
archiabllem2.1 +˙=+W
archiabllem2.2 φopp𝑔WoGrp
archiabllem2.3 φaB0˙<˙abB0˙<˙bb<˙a
Assertion archiabllem2 φWAbel

Proof

Step Hyp Ref Expression
1 archiabllem.b B=BaseW
2 archiabllem.0 0˙=0W
3 archiabllem.e ˙=W
4 archiabllem.t <˙=<W
5 archiabllem.m ·˙=W
6 archiabllem.g φWoGrp
7 archiabllem.a φWArchi
8 archiabllem2.1 +˙=+W
9 archiabllem2.2 φopp𝑔WoGrp
10 archiabllem2.3 φaB0˙<˙abB0˙<˙bb<˙a
11 ogrpgrp WoGrpWGrp
12 6 11 syl φWGrp
13 6 3ad2ant1 φxByBWoGrp
14 7 3ad2ant1 φxByBWArchi
15 9 3ad2ant1 φxByBopp𝑔WoGrp
16 simp1 φxByBφ
17 16 10 syl3an1 φxByBaB0˙<˙abB0˙<˙bb<˙a
18 simp2 φxByBxB
19 simp3 φxByByB
20 1 2 3 4 5 13 14 8 15 17 18 19 archiabllem2b φxByBx+˙y=y+˙x
21 20 3expb φxByBx+˙y=y+˙x
22 21 ralrimivva φxByBx+˙y=y+˙x
23 1 8 isabl2 WAbelWGrpxByBx+˙y=y+˙x
24 12 22 23 sylanbrc φWAbel