| Step |
Hyp |
Ref |
Expression |
| 1 |
|
archiabllem.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
archiabllem.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
archiabllem.e |
⊢ ≤ = ( le ‘ 𝑊 ) |
| 4 |
|
archiabllem.t |
⊢ < = ( lt ‘ 𝑊 ) |
| 5 |
|
archiabllem.m |
⊢ · = ( .g ‘ 𝑊 ) |
| 6 |
|
archiabllem.g |
⊢ ( 𝜑 → 𝑊 ∈ oGrp ) |
| 7 |
|
archiabllem.a |
⊢ ( 𝜑 → 𝑊 ∈ Archi ) |
| 8 |
|
archiabllem2.1 |
⊢ + = ( +g ‘ 𝑊 ) |
| 9 |
|
archiabllem2.2 |
⊢ ( 𝜑 → ( oppg ‘ 𝑊 ) ∈ oGrp ) |
| 10 |
|
archiabllem2.3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎 ) → ∃ 𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎 ) ) |
| 11 |
|
ogrpgrp |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ Grp ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 13 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ oGrp ) |
| 14 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ Archi ) |
| 15 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( oppg ‘ 𝑊 ) ∈ oGrp ) |
| 16 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) |
| 17 |
16 10
|
syl3an1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎 ) → ∃ 𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎 ) ) |
| 18 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 20 |
1 2 3 4 5 13 14 8 15 17 18 19
|
archiabllem2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 21 |
20
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 22 |
21
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 23 |
1 8
|
isabl2 |
⊢ ( 𝑊 ∈ Abel ↔ ( 𝑊 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 24 |
12 22 23
|
sylanbrc |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |