Metamath Proof Explorer


Theorem archiabl

Description: Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Assertion archiabl ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) → 𝑊 ∈ Abel )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
2 eqid ( 0g𝑊 ) = ( 0g𝑊 )
3 eqid ( le ‘ 𝑊 ) = ( le ‘ 𝑊 )
4 eqid ( lt ‘ 𝑊 ) = ( lt ‘ 𝑊 )
5 eqid ( .g𝑊 ) = ( .g𝑊 )
6 simpll1 ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ oGrp )
7 simpll3 ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Archi )
8 simplr ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) )
9 simprl ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 )
10 simp2 ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
11 simp1rr ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) )
12 simp3 ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 )
13 breq2 ( 𝑥 = 𝑦 → ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ↔ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) )
14 breq2 ( 𝑥 = 𝑦 → ( 𝑣 ( le ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑦 ) )
15 13 14 imbi12d ( 𝑥 = 𝑦 → ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) )
16 15 rspcv ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) → ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) )
17 10 11 12 16 syl3c ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → 𝑣 ( le ‘ 𝑊 ) 𝑦 )
18 1 2 3 4 5 6 7 8 9 17 archiabllem1 ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel )
19 18 adantllr ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel )
20 simpr ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
21 breq2 ( 𝑢 = 𝑣 → ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ↔ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) )
22 breq1 ( 𝑢 = 𝑣 → ( 𝑢 ( le ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) )
23 22 imbi2d ( 𝑢 = 𝑣 → ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
24 23 ralbidv ( 𝑢 = 𝑣 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
25 21 24 anbi12d ( 𝑢 = 𝑣 → ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) )
26 25 cbvrexvw ( ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
27 20 26 sylib ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
28 19 27 r19.29a ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel )
29 simpl1 ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ oGrp )
30 simpl3 ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Archi )
31 eqid ( +g𝑊 ) = ( +g𝑊 )
32 simpl2 ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ( oppg𝑊 ) ∈ oGrp )
33 simpr ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
34 ralnex ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ¬ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
35 33 34 sylibr ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ¬ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
36 rexanali ( ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) )
37 36 imbi2i ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
38 imnan ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ¬ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
39 37 38 bitri ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ¬ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
40 39 ralbii ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ¬ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
41 35 40 sylibr ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) )
42 22 notbid ( 𝑢 = 𝑣 → ( ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ↔ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) )
43 42 anbi2d ( 𝑢 = 𝑣 → ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
44 43 rexbidv ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
45 21 44 imbi12d ( 𝑢 = 𝑣 → ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) )
46 45 cbvralvw ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
47 41 46 sylib ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
48 47 r19.21bi ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) )
49 14 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ↔ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) )
50 13 49 anbi12d ( 𝑥 = 𝑦 → ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) )
51 50 cbvrexvw ( ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) )
52 48 51 syl6ib ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) )
53 52 3impia ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) )
54 simp1l1 ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → 𝑊 ∈ oGrp )
55 isogrp ( 𝑊 ∈ oGrp ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd ) )
56 55 simprbi ( 𝑊 ∈ oGrp → 𝑊 ∈ oMnd )
57 omndtos ( 𝑊 ∈ oMnd → 𝑊 ∈ Toset )
58 54 56 57 3syl ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → 𝑊 ∈ Toset )
59 simp2 ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → 𝑣 ∈ ( Base ‘ 𝑊 ) )
60 1 3 4 tltnle ( ( 𝑊 ∈ Toset ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( lt ‘ 𝑊 ) 𝑣 ↔ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) )
61 60 bicomd ( ( 𝑊 ∈ Toset ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦𝑦 ( lt ‘ 𝑊 ) 𝑣 ) )
62 61 3com23 ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦𝑦 ( lt ‘ 𝑊 ) 𝑣 ) )
63 62 3expa ( ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦𝑦 ( lt ‘ 𝑊 ) 𝑣 ) )
64 63 anbi2d ( ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) )
65 64 rexbidva ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) )
66 58 59 65 syl2anc ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) )
67 53 66 mpbid ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑦𝑦 ( lt ‘ 𝑊 ) 𝑣 ) )
68 1 2 3 4 5 29 30 31 32 67 archiabllem2 ( ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel )
69 28 68 pm2.61dan ( ( 𝑊 ∈ oGrp ∧ ( oppg𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) → 𝑊 ∈ Abel )