Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( lt ‘ 𝑊 ) = ( lt ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( .g ‘ 𝑊 ) = ( .g ‘ 𝑊 ) |
6 |
|
simpll1 |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ oGrp ) |
7 |
|
simpll3 |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Archi ) |
8 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
9 |
|
simprl |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) |
10 |
|
simp2 |
⊢ ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
11 |
|
simp1rr |
⊢ ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) |
12 |
|
simp3 |
⊢ ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) |
13 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ↔ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) ) |
14 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑣 ( le ‘ 𝑊 ) 𝑥 ↔ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 → 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) ) |
16 |
15
|
rspcv |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) → ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 → 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) ) |
17 |
10 11 12 16
|
syl3c |
⊢ ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ) → 𝑣 ( le ‘ 𝑊 ) 𝑦 ) |
18 |
1 2 3 4 5 6 7 8 9 17
|
archiabllem1 |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel ) |
19 |
18
|
adantllr |
⊢ ( ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel ) |
20 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
21 |
|
breq2 |
⊢ ( 𝑢 = 𝑣 → ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ↔ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) ) |
22 |
|
breq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 ( le ‘ 𝑊 ) 𝑥 ↔ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑢 = 𝑣 → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑢 = 𝑣 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
25 |
21 24
|
anbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ) |
26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
27 |
20 26
|
sylib |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
28 |
19 27
|
r19.29a |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel ) |
29 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ oGrp ) |
30 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Archi ) |
31 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
32 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ( oppg ‘ 𝑊 ) ∈ oGrp ) |
33 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
34 |
|
ralnex |
⊢ ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ¬ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
35 |
33 34
|
sylibr |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ¬ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
36 |
|
rexanali |
⊢ ( ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) |
37 |
36
|
imbi2i |
⊢ ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
38 |
|
imnan |
⊢ ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ¬ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
39 |
37 38
|
bitri |
⊢ ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ¬ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
40 |
39
|
ralbii |
⊢ ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ¬ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
41 |
35 40
|
sylibr |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
42 |
22
|
notbid |
⊢ ( 𝑢 = 𝑣 → ( ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ↔ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) |
43 |
42
|
anbi2d |
⊢ ( 𝑢 = 𝑣 → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
44 |
43
|
rexbidv |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
45 |
21 44
|
imbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) ) |
46 |
45
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
47 |
41 46
|
sylib |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
48 |
47
|
r19.21bi |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ) ) |
49 |
14
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ↔ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) |
50 |
13 49
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) ) |
51 |
50
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑥 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) |
52 |
48 51
|
syl6ib |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 → ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) ) |
53 |
52
|
3impia |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) |
54 |
|
simp1l1 |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → 𝑊 ∈ oGrp ) |
55 |
|
isogrp |
⊢ ( 𝑊 ∈ oGrp ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd ) ) |
56 |
55
|
simprbi |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ oMnd ) |
57 |
|
omndtos |
⊢ ( 𝑊 ∈ oMnd → 𝑊 ∈ Toset ) |
58 |
54 56 57
|
3syl |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → 𝑊 ∈ Toset ) |
59 |
|
simp2 |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
60 |
1 3 4
|
tltnle |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( lt ‘ 𝑊 ) 𝑣 ↔ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ) |
61 |
60
|
bicomd |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ↔ 𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) |
62 |
61
|
3com23 |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ↔ 𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) |
63 |
62
|
3expa |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ↔ 𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) |
64 |
63
|
anbi2d |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ 𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) ) |
65 |
64
|
rexbidva |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ 𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) ) |
66 |
58 59 65
|
syl2anc |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ ¬ 𝑣 ( le ‘ 𝑊 ) 𝑦 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ 𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) ) |
67 |
53 66
|
mpbid |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑣 ) → ∃ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑦 ∧ 𝑦 ( lt ‘ 𝑊 ) 𝑣 ) ) |
68 |
1 2 3 4 5 29 30 31 32 67
|
archiabllem2 |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ¬ ∃ 𝑢 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → 𝑢 ( le ‘ 𝑊 ) 𝑥 ) ) ) → 𝑊 ∈ Abel ) |
69 |
28 68
|
pm2.61dan |
⊢ ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ∧ 𝑊 ∈ Archi ) → 𝑊 ∈ Abel ) |