Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
simpll1 |
|
7 |
|
simpll3 |
|
8 |
|
simplr |
|
9 |
|
simprl |
|
10 |
|
simp2 |
|
11 |
|
simp1rr |
|
12 |
|
simp3 |
|
13 |
|
breq2 |
|
14 |
|
breq2 |
|
15 |
13 14
|
imbi12d |
|
16 |
15
|
rspcv |
|
17 |
10 11 12 16
|
syl3c |
|
18 |
1 2 3 4 5 6 7 8 9 17
|
archiabllem1 |
|
19 |
18
|
adantllr |
|
20 |
|
simpr |
|
21 |
|
breq2 |
|
22 |
|
breq1 |
|
23 |
22
|
imbi2d |
|
24 |
23
|
ralbidv |
|
25 |
21 24
|
anbi12d |
|
26 |
25
|
cbvrexvw |
|
27 |
20 26
|
sylib |
|
28 |
19 27
|
r19.29a |
|
29 |
|
simpl1 |
|
30 |
|
simpl3 |
|
31 |
|
eqid |
|
32 |
|
simpl2 |
|
33 |
|
simpr |
|
34 |
|
ralnex |
|
35 |
33 34
|
sylibr |
|
36 |
|
rexanali |
|
37 |
36
|
imbi2i |
|
38 |
|
imnan |
|
39 |
37 38
|
bitri |
|
40 |
39
|
ralbii |
|
41 |
35 40
|
sylibr |
|
42 |
22
|
notbid |
|
43 |
42
|
anbi2d |
|
44 |
43
|
rexbidv |
|
45 |
21 44
|
imbi12d |
|
46 |
45
|
cbvralvw |
|
47 |
41 46
|
sylib |
|
48 |
47
|
r19.21bi |
|
49 |
14
|
notbid |
|
50 |
13 49
|
anbi12d |
|
51 |
50
|
cbvrexvw |
|
52 |
48 51
|
syl6ib |
|
53 |
52
|
3impia |
|
54 |
|
simp1l1 |
|
55 |
|
isogrp |
|
56 |
55
|
simprbi |
|
57 |
|
omndtos |
|
58 |
54 56 57
|
3syl |
|
59 |
|
simp2 |
|
60 |
1 3 4
|
tltnle |
|
61 |
60
|
bicomd |
|
62 |
61
|
3com23 |
|
63 |
62
|
3expa |
|
64 |
63
|
anbi2d |
|
65 |
64
|
rexbidva |
|
66 |
58 59 65
|
syl2anc |
|
67 |
53 66
|
mpbid |
|
68 |
1 2 3 4 5 29 30 31 32 67
|
archiabllem2 |
|
69 |
28 68
|
pm2.61dan |
|