| Step |
Hyp |
Ref |
Expression |
| 1 |
|
archiabllem.b |
|
| 2 |
|
archiabllem.0 |
|
| 3 |
|
archiabllem.e |
|
| 4 |
|
archiabllem.t |
|
| 5 |
|
archiabllem.m |
|
| 6 |
|
archiabllem.g |
|
| 7 |
|
archiabllem.a |
|
| 8 |
|
archiabllem1.u |
|
| 9 |
|
archiabllem1.p |
|
| 10 |
|
archiabllem1.s |
|
| 11 |
|
ogrpgrp |
|
| 12 |
6 11
|
syl |
|
| 13 |
|
simplr |
|
| 14 |
13
|
zcnd |
|
| 15 |
|
simpr |
|
| 16 |
15
|
zcnd |
|
| 17 |
14 16
|
addcomd |
|
| 18 |
17
|
oveq1d |
|
| 19 |
12
|
ad2antrr |
|
| 20 |
8
|
ad2antrr |
|
| 21 |
|
eqid |
|
| 22 |
1 5 21
|
mulgdir |
|
| 23 |
19 13 15 20 22
|
syl13anc |
|
| 24 |
1 5 21
|
mulgdir |
|
| 25 |
19 15 13 20 24
|
syl13anc |
|
| 26 |
18 23 25
|
3eqtr3d |
|
| 27 |
26
|
adantllr |
|
| 28 |
27
|
adantlr |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpllr |
|
| 31 |
|
simpr |
|
| 32 |
30 31
|
oveq12d |
|
| 33 |
31 30
|
oveq12d |
|
| 34 |
29 32 33
|
3eqtr4d |
|
| 35 |
|
simplll |
|
| 36 |
|
simpr1r |
|
| 37 |
36
|
3anassrs |
|
| 38 |
1 2 3 4 5 6 7 8 9 10
|
archiabllem1b |
|
| 39 |
35 37 38
|
syl2anc |
|
| 40 |
34 39
|
r19.29a |
|
| 41 |
1 2 3 4 5 6 7 8 9 10
|
archiabllem1b |
|
| 42 |
41
|
adantrr |
|
| 43 |
40 42
|
r19.29a |
|
| 44 |
43
|
ralrimivva |
|
| 45 |
1 21
|
isabl2 |
|
| 46 |
12 44 45
|
sylanbrc |
|