Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
|
2 |
|
archiabllem.0 |
|
3 |
|
archiabllem.e |
|
4 |
|
archiabllem.t |
|
5 |
|
archiabllem.m |
|
6 |
|
archiabllem.g |
|
7 |
|
archiabllem.a |
|
8 |
|
archiabllem1.u |
|
9 |
|
archiabllem1.p |
|
10 |
|
archiabllem1.s |
|
11 |
|
0zd |
|
12 |
|
simpr |
|
13 |
1 2 5
|
mulg0 |
|
14 |
8 13
|
syl |
|
15 |
14
|
ad2antrr |
|
16 |
12 15
|
eqtr4d |
|
17 |
|
oveq1 |
|
18 |
17
|
rspceeqv |
|
19 |
11 16 18
|
syl2anc |
|
20 |
|
simplr |
|
21 |
20
|
nnzd |
|
22 |
21
|
znegcld |
|
23 |
8
|
3ad2ant1 |
|
24 |
23
|
ad2antrr |
|
25 |
|
eqid |
|
26 |
1 5 25
|
mulgnegnn |
|
27 |
20 24 26
|
syl2anc |
|
28 |
|
simpr |
|
29 |
28
|
fveq2d |
|
30 |
6
|
3ad2ant1 |
|
31 |
|
ogrpgrp |
|
32 |
30 31
|
syl |
|
33 |
|
simp2 |
|
34 |
1 25
|
grpinvinv |
|
35 |
32 33 34
|
syl2anc |
|
36 |
35
|
ad2antrr |
|
37 |
27 29 36
|
3eqtr2rd |
|
38 |
|
oveq1 |
|
39 |
38
|
rspceeqv |
|
40 |
22 37 39
|
syl2anc |
|
41 |
7
|
3ad2ant1 |
|
42 |
9
|
3ad2ant1 |
|
43 |
|
simp1 |
|
44 |
43 10
|
syl3an1 |
|
45 |
1 25
|
grpinvcl |
|
46 |
32 33 45
|
syl2anc |
|
47 |
1 2
|
grpidcl |
|
48 |
32 47
|
syl |
|
49 |
|
simp3 |
|
50 |
|
eqid |
|
51 |
1 4 50
|
ogrpaddlt |
|
52 |
30 33 48 46 49 51
|
syl131anc |
|
53 |
1 50 2 25
|
grprinv |
|
54 |
32 33 53
|
syl2anc |
|
55 |
1 50 2
|
grplid |
|
56 |
32 46 55
|
syl2anc |
|
57 |
52 54 56
|
3brtr3d |
|
58 |
1 2 3 4 5 30 41 23 42 44 46 57
|
archiabllem1a |
|
59 |
40 58
|
r19.29a |
|
60 |
59
|
3expa |
|
61 |
|
nnssz |
|
62 |
6
|
3ad2ant1 |
|
63 |
7
|
3ad2ant1 |
|
64 |
8
|
3ad2ant1 |
|
65 |
9
|
3ad2ant1 |
|
66 |
|
simp1 |
|
67 |
66 10
|
syl3an1 |
|
68 |
|
simp2 |
|
69 |
|
simp3 |
|
70 |
1 2 3 4 5 62 63 64 65 67 68 69
|
archiabllem1a |
|
71 |
70
|
3expa |
|
72 |
|
ssrexv |
|
73 |
61 71 72
|
mpsyl |
|
74 |
|
isogrp |
|
75 |
74
|
simprbi |
|
76 |
|
omndtos |
|
77 |
6 75 76
|
3syl |
|
78 |
77
|
adantr |
|
79 |
|
simpr |
|
80 |
6 31 47
|
3syl |
|
81 |
80
|
adantr |
|
82 |
1 4
|
tlt3 |
|
83 |
78 79 81 82
|
syl3anc |
|
84 |
19 60 73 83
|
mpjao3dan |
|