Metamath Proof Explorer


Theorem archiabllem1b

Description: Lemma for archiabl . (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses archiabllem.b B=BaseW
archiabllem.0 0˙=0W
archiabllem.e ˙=W
archiabllem.t <˙=<W
archiabllem.m ·˙=W
archiabllem.g φWoGrp
archiabllem.a φWArchi
archiabllem1.u φUB
archiabllem1.p φ0˙<˙U
archiabllem1.s φxB0˙<˙xU˙x
Assertion archiabllem1b φyBny=n·˙U

Proof

Step Hyp Ref Expression
1 archiabllem.b B=BaseW
2 archiabllem.0 0˙=0W
3 archiabllem.e ˙=W
4 archiabllem.t <˙=<W
5 archiabllem.m ·˙=W
6 archiabllem.g φWoGrp
7 archiabllem.a φWArchi
8 archiabllem1.u φUB
9 archiabllem1.p φ0˙<˙U
10 archiabllem1.s φxB0˙<˙xU˙x
11 0zd φyBy=0˙0
12 simpr φyBy=0˙y=0˙
13 1 2 5 mulg0 UB0·˙U=0˙
14 8 13 syl φ0·˙U=0˙
15 14 ad2antrr φyBy=0˙0·˙U=0˙
16 12 15 eqtr4d φyBy=0˙y=0·˙U
17 oveq1 n=0n·˙U=0·˙U
18 17 rspceeqv 0y=0·˙Uny=n·˙U
19 11 16 18 syl2anc φyBy=0˙ny=n·˙U
20 simplr φyBy<˙0˙minvgWy=m·˙Um
21 20 nnzd φyBy<˙0˙minvgWy=m·˙Um
22 21 znegcld φyBy<˙0˙minvgWy=m·˙Um
23 8 3ad2ant1 φyBy<˙0˙UB
24 23 ad2antrr φyBy<˙0˙minvgWy=m·˙UUB
25 eqid invgW=invgW
26 1 5 25 mulgnegnn mUBm·˙U=invgWm·˙U
27 20 24 26 syl2anc φyBy<˙0˙minvgWy=m·˙Um·˙U=invgWm·˙U
28 simpr φyBy<˙0˙minvgWy=m·˙UinvgWy=m·˙U
29 28 fveq2d φyBy<˙0˙minvgWy=m·˙UinvgWinvgWy=invgWm·˙U
30 6 3ad2ant1 φyBy<˙0˙WoGrp
31 ogrpgrp WoGrpWGrp
32 30 31 syl φyBy<˙0˙WGrp
33 simp2 φyBy<˙0˙yB
34 1 25 grpinvinv WGrpyBinvgWinvgWy=y
35 32 33 34 syl2anc φyBy<˙0˙invgWinvgWy=y
36 35 ad2antrr φyBy<˙0˙minvgWy=m·˙UinvgWinvgWy=y
37 27 29 36 3eqtr2rd φyBy<˙0˙minvgWy=m·˙Uy=m·˙U
38 oveq1 n=mn·˙U=m·˙U
39 38 rspceeqv my=m·˙Uny=n·˙U
40 22 37 39 syl2anc φyBy<˙0˙minvgWy=m·˙Uny=n·˙U
41 7 3ad2ant1 φyBy<˙0˙WArchi
42 9 3ad2ant1 φyBy<˙0˙0˙<˙U
43 simp1 φyBy<˙0˙φ
44 43 10 syl3an1 φyBy<˙0˙xB0˙<˙xU˙x
45 1 25 grpinvcl WGrpyBinvgWyB
46 32 33 45 syl2anc φyBy<˙0˙invgWyB
47 1 2 grpidcl WGrp0˙B
48 32 47 syl φyBy<˙0˙0˙B
49 simp3 φyBy<˙0˙y<˙0˙
50 eqid +W=+W
51 1 4 50 ogrpaddlt WoGrpyB0˙BinvgWyBy<˙0˙y+WinvgWy<˙0˙+WinvgWy
52 30 33 48 46 49 51 syl131anc φyBy<˙0˙y+WinvgWy<˙0˙+WinvgWy
53 1 50 2 25 grprinv WGrpyBy+WinvgWy=0˙
54 32 33 53 syl2anc φyBy<˙0˙y+WinvgWy=0˙
55 1 50 2 grplid WGrpinvgWyB0˙+WinvgWy=invgWy
56 32 46 55 syl2anc φyBy<˙0˙0˙+WinvgWy=invgWy
57 52 54 56 3brtr3d φyBy<˙0˙0˙<˙invgWy
58 1 2 3 4 5 30 41 23 42 44 46 57 archiabllem1a φyBy<˙0˙minvgWy=m·˙U
59 40 58 r19.29a φyBy<˙0˙ny=n·˙U
60 59 3expa φyBy<˙0˙ny=n·˙U
61 nnssz
62 6 3ad2ant1 φyB0˙<˙yWoGrp
63 7 3ad2ant1 φyB0˙<˙yWArchi
64 8 3ad2ant1 φyB0˙<˙yUB
65 9 3ad2ant1 φyB0˙<˙y0˙<˙U
66 simp1 φyB0˙<˙yφ
67 66 10 syl3an1 φyB0˙<˙yxB0˙<˙xU˙x
68 simp2 φyB0˙<˙yyB
69 simp3 φyB0˙<˙y0˙<˙y
70 1 2 3 4 5 62 63 64 65 67 68 69 archiabllem1a φyB0˙<˙yny=n·˙U
71 70 3expa φyB0˙<˙yny=n·˙U
72 ssrexv ny=n·˙Uny=n·˙U
73 61 71 72 mpsyl φyB0˙<˙yny=n·˙U
74 isogrp WoGrpWGrpWoMnd
75 74 simprbi WoGrpWoMnd
76 omndtos WoMndWToset
77 6 75 76 3syl φWToset
78 77 adantr φyBWToset
79 simpr φyByB
80 6 31 47 3syl φ0˙B
81 80 adantr φyB0˙B
82 1 4 tlt3 WTosetyB0˙By=0˙y<˙0˙0˙<˙y
83 78 79 81 82 syl3anc φyBy=0˙y<˙0˙0˙<˙y
84 19 60 73 83 mpjao3dan φyBny=n·˙U