Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
|- B = ( Base ` W ) |
2 |
|
archiabllem.0 |
|- .0. = ( 0g ` W ) |
3 |
|
archiabllem.e |
|- .<_ = ( le ` W ) |
4 |
|
archiabllem.t |
|- .< = ( lt ` W ) |
5 |
|
archiabllem.m |
|- .x. = ( .g ` W ) |
6 |
|
archiabllem.g |
|- ( ph -> W e. oGrp ) |
7 |
|
archiabllem.a |
|- ( ph -> W e. Archi ) |
8 |
|
archiabllem1.u |
|- ( ph -> U e. B ) |
9 |
|
archiabllem1.p |
|- ( ph -> .0. .< U ) |
10 |
|
archiabllem1.s |
|- ( ( ph /\ x e. B /\ .0. .< x ) -> U .<_ x ) |
11 |
|
0zd |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> 0 e. ZZ ) |
12 |
|
simpr |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> y = .0. ) |
13 |
1 2 5
|
mulg0 |
|- ( U e. B -> ( 0 .x. U ) = .0. ) |
14 |
8 13
|
syl |
|- ( ph -> ( 0 .x. U ) = .0. ) |
15 |
14
|
ad2antrr |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> ( 0 .x. U ) = .0. ) |
16 |
12 15
|
eqtr4d |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> y = ( 0 .x. U ) ) |
17 |
|
oveq1 |
|- ( n = 0 -> ( n .x. U ) = ( 0 .x. U ) ) |
18 |
17
|
rspceeqv |
|- ( ( 0 e. ZZ /\ y = ( 0 .x. U ) ) -> E. n e. ZZ y = ( n .x. U ) ) |
19 |
11 16 18
|
syl2anc |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> E. n e. ZZ y = ( n .x. U ) ) |
20 |
|
simplr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> m e. NN ) |
21 |
20
|
nnzd |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> m e. ZZ ) |
22 |
21
|
znegcld |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> -u m e. ZZ ) |
23 |
8
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> U e. B ) |
24 |
23
|
ad2antrr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> U e. B ) |
25 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
26 |
1 5 25
|
mulgnegnn |
|- ( ( m e. NN /\ U e. B ) -> ( -u m .x. U ) = ( ( invg ` W ) ` ( m .x. U ) ) ) |
27 |
20 24 26
|
syl2anc |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( -u m .x. U ) = ( ( invg ` W ) ` ( m .x. U ) ) ) |
28 |
|
simpr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( ( invg ` W ) ` y ) = ( m .x. U ) ) |
29 |
28
|
fveq2d |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = ( ( invg ` W ) ` ( m .x. U ) ) ) |
30 |
6
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> W e. oGrp ) |
31 |
|
ogrpgrp |
|- ( W e. oGrp -> W e. Grp ) |
32 |
30 31
|
syl |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> W e. Grp ) |
33 |
|
simp2 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> y e. B ) |
34 |
1 25
|
grpinvinv |
|- ( ( W e. Grp /\ y e. B ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = y ) |
35 |
32 33 34
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = y ) |
36 |
35
|
ad2antrr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = y ) |
37 |
27 29 36
|
3eqtr2rd |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> y = ( -u m .x. U ) ) |
38 |
|
oveq1 |
|- ( n = -u m -> ( n .x. U ) = ( -u m .x. U ) ) |
39 |
38
|
rspceeqv |
|- ( ( -u m e. ZZ /\ y = ( -u m .x. U ) ) -> E. n e. ZZ y = ( n .x. U ) ) |
40 |
22 37 39
|
syl2anc |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> E. n e. ZZ y = ( n .x. U ) ) |
41 |
7
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> W e. Archi ) |
42 |
9
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> .0. .< U ) |
43 |
|
simp1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ph ) |
44 |
43 10
|
syl3an1 |
|- ( ( ( ph /\ y e. B /\ y .< .0. ) /\ x e. B /\ .0. .< x ) -> U .<_ x ) |
45 |
1 25
|
grpinvcl |
|- ( ( W e. Grp /\ y e. B ) -> ( ( invg ` W ) ` y ) e. B ) |
46 |
32 33 45
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( ( invg ` W ) ` y ) e. B ) |
47 |
1 2
|
grpidcl |
|- ( W e. Grp -> .0. e. B ) |
48 |
32 47
|
syl |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> .0. e. B ) |
49 |
|
simp3 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> y .< .0. ) |
50 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
51 |
1 4 50
|
ogrpaddlt |
|- ( ( W e. oGrp /\ ( y e. B /\ .0. e. B /\ ( ( invg ` W ) ` y ) e. B ) /\ y .< .0. ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) .< ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) ) |
52 |
30 33 48 46 49 51
|
syl131anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) .< ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) ) |
53 |
1 50 2 25
|
grprinv |
|- ( ( W e. Grp /\ y e. B ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) = .0. ) |
54 |
32 33 53
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) = .0. ) |
55 |
1 50 2
|
grplid |
|- ( ( W e. Grp /\ ( ( invg ` W ) ` y ) e. B ) -> ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) = ( ( invg ` W ) ` y ) ) |
56 |
32 46 55
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) = ( ( invg ` W ) ` y ) ) |
57 |
52 54 56
|
3brtr3d |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> .0. .< ( ( invg ` W ) ` y ) ) |
58 |
1 2 3 4 5 30 41 23 42 44 46 57
|
archiabllem1a |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> E. m e. NN ( ( invg ` W ) ` y ) = ( m .x. U ) ) |
59 |
40 58
|
r19.29a |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> E. n e. ZZ y = ( n .x. U ) ) |
60 |
59
|
3expa |
|- ( ( ( ph /\ y e. B ) /\ y .< .0. ) -> E. n e. ZZ y = ( n .x. U ) ) |
61 |
|
nnssz |
|- NN C_ ZZ |
62 |
6
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> W e. oGrp ) |
63 |
7
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> W e. Archi ) |
64 |
8
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> U e. B ) |
65 |
9
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> .0. .< U ) |
66 |
|
simp1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> ph ) |
67 |
66 10
|
syl3an1 |
|- ( ( ( ph /\ y e. B /\ .0. .< y ) /\ x e. B /\ .0. .< x ) -> U .<_ x ) |
68 |
|
simp2 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> y e. B ) |
69 |
|
simp3 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> .0. .< y ) |
70 |
1 2 3 4 5 62 63 64 65 67 68 69
|
archiabllem1a |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> E. n e. NN y = ( n .x. U ) ) |
71 |
70
|
3expa |
|- ( ( ( ph /\ y e. B ) /\ .0. .< y ) -> E. n e. NN y = ( n .x. U ) ) |
72 |
|
ssrexv |
|- ( NN C_ ZZ -> ( E. n e. NN y = ( n .x. U ) -> E. n e. ZZ y = ( n .x. U ) ) ) |
73 |
61 71 72
|
mpsyl |
|- ( ( ( ph /\ y e. B ) /\ .0. .< y ) -> E. n e. ZZ y = ( n .x. U ) ) |
74 |
|
isogrp |
|- ( W e. oGrp <-> ( W e. Grp /\ W e. oMnd ) ) |
75 |
74
|
simprbi |
|- ( W e. oGrp -> W e. oMnd ) |
76 |
|
omndtos |
|- ( W e. oMnd -> W e. Toset ) |
77 |
6 75 76
|
3syl |
|- ( ph -> W e. Toset ) |
78 |
77
|
adantr |
|- ( ( ph /\ y e. B ) -> W e. Toset ) |
79 |
|
simpr |
|- ( ( ph /\ y e. B ) -> y e. B ) |
80 |
6 31 47
|
3syl |
|- ( ph -> .0. e. B ) |
81 |
80
|
adantr |
|- ( ( ph /\ y e. B ) -> .0. e. B ) |
82 |
1 4
|
tlt3 |
|- ( ( W e. Toset /\ y e. B /\ .0. e. B ) -> ( y = .0. \/ y .< .0. \/ .0. .< y ) ) |
83 |
78 79 81 82
|
syl3anc |
|- ( ( ph /\ y e. B ) -> ( y = .0. \/ y .< .0. \/ .0. .< y ) ) |
84 |
19 60 73 83
|
mpjao3dan |
|- ( ( ph /\ y e. B ) -> E. n e. ZZ y = ( n .x. U ) ) |