| Step |
Hyp |
Ref |
Expression |
| 1 |
|
archiabllem.b |
|- B = ( Base ` W ) |
| 2 |
|
archiabllem.0 |
|- .0. = ( 0g ` W ) |
| 3 |
|
archiabllem.e |
|- .<_ = ( le ` W ) |
| 4 |
|
archiabllem.t |
|- .< = ( lt ` W ) |
| 5 |
|
archiabllem.m |
|- .x. = ( .g ` W ) |
| 6 |
|
archiabllem.g |
|- ( ph -> W e. oGrp ) |
| 7 |
|
archiabllem.a |
|- ( ph -> W e. Archi ) |
| 8 |
|
archiabllem1.u |
|- ( ph -> U e. B ) |
| 9 |
|
archiabllem1.p |
|- ( ph -> .0. .< U ) |
| 10 |
|
archiabllem1.s |
|- ( ( ph /\ x e. B /\ .0. .< x ) -> U .<_ x ) |
| 11 |
|
0zd |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> 0 e. ZZ ) |
| 12 |
|
simpr |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> y = .0. ) |
| 13 |
1 2 5
|
mulg0 |
|- ( U e. B -> ( 0 .x. U ) = .0. ) |
| 14 |
8 13
|
syl |
|- ( ph -> ( 0 .x. U ) = .0. ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> ( 0 .x. U ) = .0. ) |
| 16 |
12 15
|
eqtr4d |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> y = ( 0 .x. U ) ) |
| 17 |
|
oveq1 |
|- ( n = 0 -> ( n .x. U ) = ( 0 .x. U ) ) |
| 18 |
17
|
rspceeqv |
|- ( ( 0 e. ZZ /\ y = ( 0 .x. U ) ) -> E. n e. ZZ y = ( n .x. U ) ) |
| 19 |
11 16 18
|
syl2anc |
|- ( ( ( ph /\ y e. B ) /\ y = .0. ) -> E. n e. ZZ y = ( n .x. U ) ) |
| 20 |
|
simplr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> m e. NN ) |
| 21 |
20
|
nnzd |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> m e. ZZ ) |
| 22 |
21
|
znegcld |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> -u m e. ZZ ) |
| 23 |
8
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> U e. B ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> U e. B ) |
| 25 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 26 |
1 5 25
|
mulgnegnn |
|- ( ( m e. NN /\ U e. B ) -> ( -u m .x. U ) = ( ( invg ` W ) ` ( m .x. U ) ) ) |
| 27 |
20 24 26
|
syl2anc |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( -u m .x. U ) = ( ( invg ` W ) ` ( m .x. U ) ) ) |
| 28 |
|
simpr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( ( invg ` W ) ` y ) = ( m .x. U ) ) |
| 29 |
28
|
fveq2d |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = ( ( invg ` W ) ` ( m .x. U ) ) ) |
| 30 |
6
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> W e. oGrp ) |
| 31 |
|
ogrpgrp |
|- ( W e. oGrp -> W e. Grp ) |
| 32 |
30 31
|
syl |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> W e. Grp ) |
| 33 |
|
simp2 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> y e. B ) |
| 34 |
1 25
|
grpinvinv |
|- ( ( W e. Grp /\ y e. B ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = y ) |
| 35 |
32 33 34
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = y ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` y ) ) = y ) |
| 37 |
27 29 36
|
3eqtr2rd |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> y = ( -u m .x. U ) ) |
| 38 |
|
oveq1 |
|- ( n = -u m -> ( n .x. U ) = ( -u m .x. U ) ) |
| 39 |
38
|
rspceeqv |
|- ( ( -u m e. ZZ /\ y = ( -u m .x. U ) ) -> E. n e. ZZ y = ( n .x. U ) ) |
| 40 |
22 37 39
|
syl2anc |
|- ( ( ( ( ph /\ y e. B /\ y .< .0. ) /\ m e. NN ) /\ ( ( invg ` W ) ` y ) = ( m .x. U ) ) -> E. n e. ZZ y = ( n .x. U ) ) |
| 41 |
7
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> W e. Archi ) |
| 42 |
9
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> .0. .< U ) |
| 43 |
|
simp1 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ph ) |
| 44 |
43 10
|
syl3an1 |
|- ( ( ( ph /\ y e. B /\ y .< .0. ) /\ x e. B /\ .0. .< x ) -> U .<_ x ) |
| 45 |
1 25
|
grpinvcl |
|- ( ( W e. Grp /\ y e. B ) -> ( ( invg ` W ) ` y ) e. B ) |
| 46 |
32 33 45
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( ( invg ` W ) ` y ) e. B ) |
| 47 |
1 2
|
grpidcl |
|- ( W e. Grp -> .0. e. B ) |
| 48 |
32 47
|
syl |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> .0. e. B ) |
| 49 |
|
simp3 |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> y .< .0. ) |
| 50 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 51 |
1 4 50
|
ogrpaddlt |
|- ( ( W e. oGrp /\ ( y e. B /\ .0. e. B /\ ( ( invg ` W ) ` y ) e. B ) /\ y .< .0. ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) .< ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) ) |
| 52 |
30 33 48 46 49 51
|
syl131anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) .< ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) ) |
| 53 |
1 50 2 25
|
grprinv |
|- ( ( W e. Grp /\ y e. B ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) = .0. ) |
| 54 |
32 33 53
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( y ( +g ` W ) ( ( invg ` W ) ` y ) ) = .0. ) |
| 55 |
1 50 2
|
grplid |
|- ( ( W e. Grp /\ ( ( invg ` W ) ` y ) e. B ) -> ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) = ( ( invg ` W ) ` y ) ) |
| 56 |
32 46 55
|
syl2anc |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> ( .0. ( +g ` W ) ( ( invg ` W ) ` y ) ) = ( ( invg ` W ) ` y ) ) |
| 57 |
52 54 56
|
3brtr3d |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> .0. .< ( ( invg ` W ) ` y ) ) |
| 58 |
1 2 3 4 5 30 41 23 42 44 46 57
|
archiabllem1a |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> E. m e. NN ( ( invg ` W ) ` y ) = ( m .x. U ) ) |
| 59 |
40 58
|
r19.29a |
|- ( ( ph /\ y e. B /\ y .< .0. ) -> E. n e. ZZ y = ( n .x. U ) ) |
| 60 |
59
|
3expa |
|- ( ( ( ph /\ y e. B ) /\ y .< .0. ) -> E. n e. ZZ y = ( n .x. U ) ) |
| 61 |
|
nnssz |
|- NN C_ ZZ |
| 62 |
6
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> W e. oGrp ) |
| 63 |
7
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> W e. Archi ) |
| 64 |
8
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> U e. B ) |
| 65 |
9
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> .0. .< U ) |
| 66 |
|
simp1 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> ph ) |
| 67 |
66 10
|
syl3an1 |
|- ( ( ( ph /\ y e. B /\ .0. .< y ) /\ x e. B /\ .0. .< x ) -> U .<_ x ) |
| 68 |
|
simp2 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> y e. B ) |
| 69 |
|
simp3 |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> .0. .< y ) |
| 70 |
1 2 3 4 5 62 63 64 65 67 68 69
|
archiabllem1a |
|- ( ( ph /\ y e. B /\ .0. .< y ) -> E. n e. NN y = ( n .x. U ) ) |
| 71 |
70
|
3expa |
|- ( ( ( ph /\ y e. B ) /\ .0. .< y ) -> E. n e. NN y = ( n .x. U ) ) |
| 72 |
|
ssrexv |
|- ( NN C_ ZZ -> ( E. n e. NN y = ( n .x. U ) -> E. n e. ZZ y = ( n .x. U ) ) ) |
| 73 |
61 71 72
|
mpsyl |
|- ( ( ( ph /\ y e. B ) /\ .0. .< y ) -> E. n e. ZZ y = ( n .x. U ) ) |
| 74 |
|
isogrp |
|- ( W e. oGrp <-> ( W e. Grp /\ W e. oMnd ) ) |
| 75 |
74
|
simprbi |
|- ( W e. oGrp -> W e. oMnd ) |
| 76 |
|
omndtos |
|- ( W e. oMnd -> W e. Toset ) |
| 77 |
6 75 76
|
3syl |
|- ( ph -> W e. Toset ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ y e. B ) -> W e. Toset ) |
| 79 |
|
simpr |
|- ( ( ph /\ y e. B ) -> y e. B ) |
| 80 |
6 31 47
|
3syl |
|- ( ph -> .0. e. B ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ y e. B ) -> .0. e. B ) |
| 82 |
1 4
|
tlt3 |
|- ( ( W e. Toset /\ y e. B /\ .0. e. B ) -> ( y = .0. \/ y .< .0. \/ .0. .< y ) ) |
| 83 |
78 79 81 82
|
syl3anc |
|- ( ( ph /\ y e. B ) -> ( y = .0. \/ y .< .0. \/ .0. .< y ) ) |
| 84 |
19 60 73 83
|
mpjao3dan |
|- ( ( ph /\ y e. B ) -> E. n e. ZZ y = ( n .x. U ) ) |