Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
|- B = ( Base ` W ) |
2 |
|
archiabllem.0 |
|- .0. = ( 0g ` W ) |
3 |
|
archiabllem.e |
|- .<_ = ( le ` W ) |
4 |
|
archiabllem.t |
|- .< = ( lt ` W ) |
5 |
|
archiabllem.m |
|- .x. = ( .g ` W ) |
6 |
|
archiabllem.g |
|- ( ph -> W e. oGrp ) |
7 |
|
archiabllem.a |
|- ( ph -> W e. Archi ) |
8 |
|
archiabllem1.u |
|- ( ph -> U e. B ) |
9 |
|
archiabllem1.p |
|- ( ph -> .0. .< U ) |
10 |
|
archiabllem1.s |
|- ( ( ph /\ x e. B /\ .0. .< x ) -> U .<_ x ) |
11 |
|
archiabllem1a.x |
|- ( ph -> X e. B ) |
12 |
|
archiabllem1a.c |
|- ( ph -> .0. .< X ) |
13 |
|
simplr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> m e. NN0 ) |
14 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
15 |
13 14
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( m + 1 ) e. NN ) |
16 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> U e. B ) |
17 |
1 5
|
mulg1 |
|- ( U e. B -> ( 1 .x. U ) = U ) |
18 |
16 17
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( 1 .x. U ) = U ) |
19 |
18
|
oveq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( 1 .x. U ) ( +g ` W ) ( m .x. U ) ) = ( U ( +g ` W ) ( m .x. U ) ) ) |
20 |
6
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> W e. oGrp ) |
21 |
|
ogrpgrp |
|- ( W e. oGrp -> W e. Grp ) |
22 |
20 21
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> W e. Grp ) |
23 |
|
1zzd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> 1 e. ZZ ) |
24 |
13
|
nn0zd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> m e. ZZ ) |
25 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
26 |
1 5 25
|
mulgdir |
|- ( ( W e. Grp /\ ( 1 e. ZZ /\ m e. ZZ /\ U e. B ) ) -> ( ( 1 + m ) .x. U ) = ( ( 1 .x. U ) ( +g ` W ) ( m .x. U ) ) ) |
27 |
22 23 24 16 26
|
syl13anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( 1 + m ) .x. U ) = ( ( 1 .x. U ) ( +g ` W ) ( m .x. U ) ) ) |
28 |
|
isogrp |
|- ( W e. oGrp <-> ( W e. Grp /\ W e. oMnd ) ) |
29 |
28
|
simprbi |
|- ( W e. oGrp -> W e. oMnd ) |
30 |
|
omndtos |
|- ( W e. oMnd -> W e. Toset ) |
31 |
|
tospos |
|- ( W e. Toset -> W e. Poset ) |
32 |
29 30 31
|
3syl |
|- ( W e. oGrp -> W e. Poset ) |
33 |
20 32
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> W e. Poset ) |
34 |
11
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> X e. B ) |
35 |
1 5
|
mulgcl |
|- ( ( W e. Grp /\ m e. ZZ /\ U e. B ) -> ( m .x. U ) e. B ) |
36 |
22 24 16 35
|
syl3anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( m .x. U ) e. B ) |
37 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
38 |
1 37
|
grpsubcl |
|- ( ( W e. Grp /\ X e. B /\ ( m .x. U ) e. B ) -> ( X ( -g ` W ) ( m .x. U ) ) e. B ) |
39 |
22 34 36 38
|
syl3anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( X ( -g ` W ) ( m .x. U ) ) e. B ) |
40 |
24
|
peano2zd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( m + 1 ) e. ZZ ) |
41 |
1 5
|
mulgcl |
|- ( ( W e. Grp /\ ( m + 1 ) e. ZZ /\ U e. B ) -> ( ( m + 1 ) .x. U ) e. B ) |
42 |
22 40 16 41
|
syl3anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( m + 1 ) .x. U ) e. B ) |
43 |
|
simprr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> X .<_ ( ( m + 1 ) .x. U ) ) |
44 |
1 3 37
|
ogrpsub |
|- ( ( W e. oGrp /\ ( X e. B /\ ( ( m + 1 ) .x. U ) e. B /\ ( m .x. U ) e. B ) /\ X .<_ ( ( m + 1 ) .x. U ) ) -> ( X ( -g ` W ) ( m .x. U ) ) .<_ ( ( ( m + 1 ) .x. U ) ( -g ` W ) ( m .x. U ) ) ) |
45 |
20 34 42 36 43 44
|
syl131anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( X ( -g ` W ) ( m .x. U ) ) .<_ ( ( ( m + 1 ) .x. U ) ( -g ` W ) ( m .x. U ) ) ) |
46 |
13
|
nn0cnd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> m e. CC ) |
47 |
|
1cnd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> 1 e. CC ) |
48 |
46 47
|
pncan2d |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( m + 1 ) - m ) = 1 ) |
49 |
48
|
oveq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( ( m + 1 ) - m ) .x. U ) = ( 1 .x. U ) ) |
50 |
1 5 37
|
mulgsubdir |
|- ( ( W e. Grp /\ ( ( m + 1 ) e. ZZ /\ m e. ZZ /\ U e. B ) ) -> ( ( ( m + 1 ) - m ) .x. U ) = ( ( ( m + 1 ) .x. U ) ( -g ` W ) ( m .x. U ) ) ) |
51 |
22 40 24 16 50
|
syl13anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( ( m + 1 ) - m ) .x. U ) = ( ( ( m + 1 ) .x. U ) ( -g ` W ) ( m .x. U ) ) ) |
52 |
49 51 18
|
3eqtr3d |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( ( m + 1 ) .x. U ) ( -g ` W ) ( m .x. U ) ) = U ) |
53 |
45 52
|
breqtrd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( X ( -g ` W ) ( m .x. U ) ) .<_ U ) |
54 |
10
|
3expia |
|- ( ( ph /\ x e. B ) -> ( .0. .< x -> U .<_ x ) ) |
55 |
54
|
ralrimiva |
|- ( ph -> A. x e. B ( .0. .< x -> U .<_ x ) ) |
56 |
55
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> A. x e. B ( .0. .< x -> U .<_ x ) ) |
57 |
1 2 37
|
grpsubid |
|- ( ( W e. Grp /\ ( m .x. U ) e. B ) -> ( ( m .x. U ) ( -g ` W ) ( m .x. U ) ) = .0. ) |
58 |
22 36 57
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( m .x. U ) ( -g ` W ) ( m .x. U ) ) = .0. ) |
59 |
|
simprl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( m .x. U ) .< X ) |
60 |
1 4 37
|
ogrpsublt |
|- ( ( W e. oGrp /\ ( ( m .x. U ) e. B /\ X e. B /\ ( m .x. U ) e. B ) /\ ( m .x. U ) .< X ) -> ( ( m .x. U ) ( -g ` W ) ( m .x. U ) ) .< ( X ( -g ` W ) ( m .x. U ) ) ) |
61 |
20 36 34 36 59 60
|
syl131anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( m .x. U ) ( -g ` W ) ( m .x. U ) ) .< ( X ( -g ` W ) ( m .x. U ) ) ) |
62 |
58 61
|
eqbrtrrd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> .0. .< ( X ( -g ` W ) ( m .x. U ) ) ) |
63 |
|
breq2 |
|- ( x = ( X ( -g ` W ) ( m .x. U ) ) -> ( .0. .< x <-> .0. .< ( X ( -g ` W ) ( m .x. U ) ) ) ) |
64 |
|
breq2 |
|- ( x = ( X ( -g ` W ) ( m .x. U ) ) -> ( U .<_ x <-> U .<_ ( X ( -g ` W ) ( m .x. U ) ) ) ) |
65 |
63 64
|
imbi12d |
|- ( x = ( X ( -g ` W ) ( m .x. U ) ) -> ( ( .0. .< x -> U .<_ x ) <-> ( .0. .< ( X ( -g ` W ) ( m .x. U ) ) -> U .<_ ( X ( -g ` W ) ( m .x. U ) ) ) ) ) |
66 |
65
|
rspcv |
|- ( ( X ( -g ` W ) ( m .x. U ) ) e. B -> ( A. x e. B ( .0. .< x -> U .<_ x ) -> ( .0. .< ( X ( -g ` W ) ( m .x. U ) ) -> U .<_ ( X ( -g ` W ) ( m .x. U ) ) ) ) ) |
67 |
39 56 62 66
|
syl3c |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> U .<_ ( X ( -g ` W ) ( m .x. U ) ) ) |
68 |
1 3
|
posasymb |
|- ( ( W e. Poset /\ ( X ( -g ` W ) ( m .x. U ) ) e. B /\ U e. B ) -> ( ( ( X ( -g ` W ) ( m .x. U ) ) .<_ U /\ U .<_ ( X ( -g ` W ) ( m .x. U ) ) ) <-> ( X ( -g ` W ) ( m .x. U ) ) = U ) ) |
69 |
68
|
biimpa |
|- ( ( ( W e. Poset /\ ( X ( -g ` W ) ( m .x. U ) ) e. B /\ U e. B ) /\ ( ( X ( -g ` W ) ( m .x. U ) ) .<_ U /\ U .<_ ( X ( -g ` W ) ( m .x. U ) ) ) ) -> ( X ( -g ` W ) ( m .x. U ) ) = U ) |
70 |
33 39 16 53 67 69
|
syl32anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( X ( -g ` W ) ( m .x. U ) ) = U ) |
71 |
70
|
oveq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( X ( -g ` W ) ( m .x. U ) ) ( +g ` W ) ( m .x. U ) ) = ( U ( +g ` W ) ( m .x. U ) ) ) |
72 |
19 27 71
|
3eqtr4rd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( X ( -g ` W ) ( m .x. U ) ) ( +g ` W ) ( m .x. U ) ) = ( ( 1 + m ) .x. U ) ) |
73 |
1 25 37
|
grpnpcan |
|- ( ( W e. Grp /\ X e. B /\ ( m .x. U ) e. B ) -> ( ( X ( -g ` W ) ( m .x. U ) ) ( +g ` W ) ( m .x. U ) ) = X ) |
74 |
22 34 36 73
|
syl3anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( X ( -g ` W ) ( m .x. U ) ) ( +g ` W ) ( m .x. U ) ) = X ) |
75 |
47 46
|
addcomd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( 1 + m ) = ( m + 1 ) ) |
76 |
75
|
oveq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> ( ( 1 + m ) .x. U ) = ( ( m + 1 ) .x. U ) ) |
77 |
72 74 76
|
3eqtr3d |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> X = ( ( m + 1 ) .x. U ) ) |
78 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n .x. U ) = ( ( m + 1 ) .x. U ) ) |
79 |
78
|
rspceeqv |
|- ( ( ( m + 1 ) e. NN /\ X = ( ( m + 1 ) .x. U ) ) -> E. n e. NN X = ( n .x. U ) ) |
80 |
15 77 79
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) -> E. n e. NN X = ( n .x. U ) ) |
81 |
1 2 4 3 5 6 7 8 11 9 12
|
archirng |
|- ( ph -> E. m e. NN0 ( ( m .x. U ) .< X /\ X .<_ ( ( m + 1 ) .x. U ) ) ) |
82 |
80 81
|
r19.29a |
|- ( ph -> E. n e. NN X = ( n .x. U ) ) |