Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
|
2 |
|
archiabllem.0 |
|
3 |
|
archiabllem.e |
|
4 |
|
archiabllem.t |
|
5 |
|
archiabllem.m |
|
6 |
|
archiabllem.g |
|
7 |
|
archiabllem.a |
|
8 |
|
archiabllem1.u |
|
9 |
|
archiabllem1.p |
|
10 |
|
archiabllem1.s |
|
11 |
|
archiabllem1a.x |
|
12 |
|
archiabllem1a.c |
|
13 |
|
simplr |
|
14 |
|
nn0p1nn |
|
15 |
13 14
|
syl |
|
16 |
8
|
ad2antrr |
|
17 |
1 5
|
mulg1 |
|
18 |
16 17
|
syl |
|
19 |
18
|
oveq1d |
|
20 |
6
|
ad2antrr |
|
21 |
|
ogrpgrp |
|
22 |
20 21
|
syl |
|
23 |
|
1zzd |
|
24 |
13
|
nn0zd |
|
25 |
|
eqid |
|
26 |
1 5 25
|
mulgdir |
|
27 |
22 23 24 16 26
|
syl13anc |
|
28 |
|
isogrp |
|
29 |
28
|
simprbi |
|
30 |
|
omndtos |
|
31 |
|
tospos |
|
32 |
20 29 30 31
|
4syl |
|
33 |
11
|
ad2antrr |
|
34 |
1 5
|
mulgcl |
|
35 |
22 24 16 34
|
syl3anc |
|
36 |
|
eqid |
|
37 |
1 36
|
grpsubcl |
|
38 |
22 33 35 37
|
syl3anc |
|
39 |
24
|
peano2zd |
|
40 |
1 5
|
mulgcl |
|
41 |
22 39 16 40
|
syl3anc |
|
42 |
|
simprr |
|
43 |
1 3 36
|
ogrpsub |
|
44 |
20 33 41 35 42 43
|
syl131anc |
|
45 |
13
|
nn0cnd |
|
46 |
|
1cnd |
|
47 |
45 46
|
pncan2d |
|
48 |
47
|
oveq1d |
|
49 |
1 5 36
|
mulgsubdir |
|
50 |
22 39 24 16 49
|
syl13anc |
|
51 |
48 50 18
|
3eqtr3d |
|
52 |
44 51
|
breqtrd |
|
53 |
10
|
3expia |
|
54 |
53
|
ralrimiva |
|
55 |
54
|
ad2antrr |
|
56 |
1 2 36
|
grpsubid |
|
57 |
22 35 56
|
syl2anc |
|
58 |
|
simprl |
|
59 |
1 4 36
|
ogrpsublt |
|
60 |
20 35 33 35 58 59
|
syl131anc |
|
61 |
57 60
|
eqbrtrrd |
|
62 |
|
breq2 |
|
63 |
|
breq2 |
|
64 |
62 63
|
imbi12d |
|
65 |
64
|
rspcv |
|
66 |
38 55 61 65
|
syl3c |
|
67 |
1 3
|
posasymb |
|
68 |
67
|
biimpa |
|
69 |
32 38 16 52 66 68
|
syl32anc |
|
70 |
69
|
oveq1d |
|
71 |
19 27 70
|
3eqtr4rd |
|
72 |
1 25 36
|
grpnpcan |
|
73 |
22 33 35 72
|
syl3anc |
|
74 |
46 45
|
addcomd |
|
75 |
74
|
oveq1d |
|
76 |
71 73 75
|
3eqtr3d |
|
77 |
|
oveq1 |
|
78 |
77
|
rspceeqv |
|
79 |
15 76 78
|
syl2anc |
|
80 |
1 2 4 3 5 6 7 8 11 9 12
|
archirng |
|
81 |
79 80
|
r19.29a |
|