Metamath Proof Explorer


Theorem ogrpsublt

Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpsublt.0 B=BaseG
ogrpsublt.1 <˙=<G
ogrpsublt.2 -˙=-G
Assertion ogrpsublt GoGrpXBYBZBX<˙YX-˙Z<˙Y-˙Z

Proof

Step Hyp Ref Expression
1 ogrpsublt.0 B=BaseG
2 ogrpsublt.1 <˙=<G
3 ogrpsublt.2 -˙=-G
4 simp3 GoGrpXBYBZBX<˙YX<˙Y
5 simp1 GoGrpXBYBZBX<˙YGoGrp
6 simp21 GoGrpXBYBZBX<˙YXB
7 simp22 GoGrpXBYBZBX<˙YYB
8 eqid G=G
9 8 2 pltval GoGrpXBYBX<˙YXGYXY
10 5 6 7 9 syl3anc GoGrpXBYBZBX<˙YX<˙YXGYXY
11 4 10 mpbid GoGrpXBYBZBX<˙YXGYXY
12 11 simpld GoGrpXBYBZBX<˙YXGY
13 1 8 3 ogrpsub GoGrpXBYBZBXGYX-˙ZGY-˙Z
14 12 13 syld3an3 GoGrpXBYBZBX<˙YX-˙ZGY-˙Z
15 11 simprd GoGrpXBYBZBX<˙YXY
16 ogrpgrp GoGrpGGrp
17 5 16 syl GoGrpXBYBZBX<˙YGGrp
18 simp23 GoGrpXBYBZBX<˙YZB
19 1 3 grpsubrcan GGrpXBYBZBX-˙Z=Y-˙ZX=Y
20 17 6 7 18 19 syl13anc GoGrpXBYBZBX<˙YX-˙Z=Y-˙ZX=Y
21 20 necon3bid GoGrpXBYBZBX<˙YX-˙ZY-˙ZXY
22 15 21 mpbird GoGrpXBYBZBX<˙YX-˙ZY-˙Z
23 1 3 grpsubcl GGrpXBZBX-˙ZB
24 17 6 18 23 syl3anc GoGrpXBYBZBX<˙YX-˙ZB
25 1 3 grpsubcl GGrpYBZBY-˙ZB
26 17 7 18 25 syl3anc GoGrpXBYBZBX<˙YY-˙ZB
27 8 2 pltval GoGrpX-˙ZBY-˙ZBX-˙Z<˙Y-˙ZX-˙ZGY-˙ZX-˙ZY-˙Z
28 5 24 26 27 syl3anc GoGrpXBYBZBX<˙YX-˙Z<˙Y-˙ZX-˙ZGY-˙ZX-˙ZY-˙Z
29 14 22 28 mpbir2and GoGrpXBYBZBX<˙YX-˙Z<˙Y-˙Z