Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ogrpsublt.0 | |
|
ogrpsublt.1 | |
||
ogrpsublt.2 | |
||
Assertion | ogrpsublt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpsublt.0 | |
|
2 | ogrpsublt.1 | |
|
3 | ogrpsublt.2 | |
|
4 | simp3 | |
|
5 | simp1 | |
|
6 | simp21 | |
|
7 | simp22 | |
|
8 | eqid | |
|
9 | 8 2 | pltval | |
10 | 5 6 7 9 | syl3anc | |
11 | 4 10 | mpbid | |
12 | 11 | simpld | |
13 | 1 8 3 | ogrpsub | |
14 | 12 13 | syld3an3 | |
15 | 11 | simprd | |
16 | ogrpgrp | |
|
17 | 5 16 | syl | |
18 | simp23 | |
|
19 | 1 3 | grpsubrcan | |
20 | 17 6 7 18 19 | syl13anc | |
21 | 20 | necon3bid | |
22 | 15 21 | mpbird | |
23 | 1 3 | grpsubcl | |
24 | 17 6 18 23 | syl3anc | |
25 | 1 3 | grpsubcl | |
26 | 17 7 18 25 | syl3anc | |
27 | 8 2 | pltval | |
28 | 5 24 26 27 | syl3anc | |
29 | 14 22 28 | mpbir2and | |