Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
archiabllem.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
archiabllem.e |
⊢ ≤ = ( le ‘ 𝑊 ) |
4 |
|
archiabllem.t |
⊢ < = ( lt ‘ 𝑊 ) |
5 |
|
archiabllem.m |
⊢ · = ( .g ‘ 𝑊 ) |
6 |
|
archiabllem.g |
⊢ ( 𝜑 → 𝑊 ∈ oGrp ) |
7 |
|
archiabllem.a |
⊢ ( 𝜑 → 𝑊 ∈ Archi ) |
8 |
|
archiabllem1.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
9 |
|
archiabllem1.p |
⊢ ( 𝜑 → 0 < 𝑈 ) |
10 |
|
archiabllem1.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥 ) → 𝑈 ≤ 𝑥 ) |
11 |
|
ogrpgrp |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ Grp ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
13 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℤ ) |
14 |
13
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℂ ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) |
16 |
15
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℂ ) |
17 |
14 16
|
addcomd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑚 + 𝑛 ) = ( 𝑛 + 𝑚 ) ) |
18 |
17
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 + 𝑛 ) · 𝑈 ) = ( ( 𝑛 + 𝑚 ) · 𝑈 ) ) |
19 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑊 ∈ Grp ) |
20 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑈 ∈ 𝐵 ) |
21 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
22 |
1 5 21
|
mulgdir |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑈 ∈ 𝐵 ) ) → ( ( 𝑚 + 𝑛 ) · 𝑈 ) = ( ( 𝑚 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑛 · 𝑈 ) ) ) |
23 |
19 13 15 20 22
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 + 𝑛 ) · 𝑈 ) = ( ( 𝑚 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑛 · 𝑈 ) ) ) |
24 |
1 5 21
|
mulgdir |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈 ∈ 𝐵 ) ) → ( ( 𝑛 + 𝑚 ) · 𝑈 ) = ( ( 𝑛 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑚 · 𝑈 ) ) ) |
25 |
19 15 13 20 24
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 + 𝑚 ) · 𝑈 ) = ( ( 𝑛 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑚 · 𝑈 ) ) ) |
26 |
18 23 25
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑚 · 𝑈 ) ) ) |
27 |
26
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑚 · 𝑈 ) ) ) |
28 |
27
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑚 · 𝑈 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( ( 𝑚 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑚 · 𝑈 ) ) ) |
30 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → 𝑦 = ( 𝑚 · 𝑈 ) ) |
31 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → 𝑧 = ( 𝑛 · 𝑈 ) ) |
32 |
30 31
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( ( 𝑚 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑛 · 𝑈 ) ) ) |
33 |
31 30
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) = ( ( 𝑛 · 𝑈 ) ( +g ‘ 𝑊 ) ( 𝑚 · 𝑈 ) ) ) |
34 |
29 32 33
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) |
35 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → 𝜑 ) |
36 |
|
simpr1r |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ) → 𝑧 ∈ 𝐵 ) |
37 |
36
|
3anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → 𝑧 ∈ 𝐵 ) |
38 |
1 2 3 4 5 6 7 8 9 10
|
archiabllem1b |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑈 ) ) |
39 |
35 37 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑈 ) ) |
40 |
34 39
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) |
41 |
1 2 3 4 5 6 7 8 9 10
|
archiabllem1b |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑈 ) ) |
42 |
41
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑈 ) ) |
43 |
40 42
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) |
44 |
43
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) |
45 |
1 21
|
isabl2 |
⊢ ( 𝑊 ∈ Abel ↔ ( 𝑊 ∈ Grp ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) ) |
46 |
12 44 45
|
sylanbrc |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |