Metamath Proof Explorer


Theorem archiabllem1

Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses archiabllem.b 𝐵 = ( Base ‘ 𝑊 )
archiabllem.0 0 = ( 0g𝑊 )
archiabllem.e = ( le ‘ 𝑊 )
archiabllem.t < = ( lt ‘ 𝑊 )
archiabllem.m · = ( .g𝑊 )
archiabllem.g ( 𝜑𝑊 ∈ oGrp )
archiabllem.a ( 𝜑𝑊 ∈ Archi )
archiabllem1.u ( 𝜑𝑈𝐵 )
archiabllem1.p ( 𝜑0 < 𝑈 )
archiabllem1.s ( ( 𝜑𝑥𝐵0 < 𝑥 ) → 𝑈 𝑥 )
Assertion archiabllem1 ( 𝜑𝑊 ∈ Abel )

Proof

Step Hyp Ref Expression
1 archiabllem.b 𝐵 = ( Base ‘ 𝑊 )
2 archiabllem.0 0 = ( 0g𝑊 )
3 archiabllem.e = ( le ‘ 𝑊 )
4 archiabllem.t < = ( lt ‘ 𝑊 )
5 archiabllem.m · = ( .g𝑊 )
6 archiabllem.g ( 𝜑𝑊 ∈ oGrp )
7 archiabllem.a ( 𝜑𝑊 ∈ Archi )
8 archiabllem1.u ( 𝜑𝑈𝐵 )
9 archiabllem1.p ( 𝜑0 < 𝑈 )
10 archiabllem1.s ( ( 𝜑𝑥𝐵0 < 𝑥 ) → 𝑈 𝑥 )
11 ogrpgrp ( 𝑊 ∈ oGrp → 𝑊 ∈ Grp )
12 6 11 syl ( 𝜑𝑊 ∈ Grp )
13 simplr ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℤ )
14 13 zcnd ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℂ )
15 simpr ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ )
16 15 zcnd ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℂ )
17 14 16 addcomd ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑚 + 𝑛 ) = ( 𝑛 + 𝑚 ) )
18 17 oveq1d ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 + 𝑛 ) · 𝑈 ) = ( ( 𝑛 + 𝑚 ) · 𝑈 ) )
19 12 ad2antrr ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑊 ∈ Grp )
20 8 ad2antrr ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → 𝑈𝐵 )
21 eqid ( +g𝑊 ) = ( +g𝑊 )
22 1 5 21 mulgdir ( ( 𝑊 ∈ Grp ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑈𝐵 ) ) → ( ( 𝑚 + 𝑛 ) · 𝑈 ) = ( ( 𝑚 · 𝑈 ) ( +g𝑊 ) ( 𝑛 · 𝑈 ) ) )
23 19 13 15 20 22 syl13anc ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 + 𝑛 ) · 𝑈 ) = ( ( 𝑚 · 𝑈 ) ( +g𝑊 ) ( 𝑛 · 𝑈 ) ) )
24 1 5 21 mulgdir ( ( 𝑊 ∈ Grp ∧ ( 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵 ) ) → ( ( 𝑛 + 𝑚 ) · 𝑈 ) = ( ( 𝑛 · 𝑈 ) ( +g𝑊 ) ( 𝑚 · 𝑈 ) ) )
25 19 15 13 20 24 syl13anc ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 + 𝑚 ) · 𝑈 ) = ( ( 𝑛 · 𝑈 ) ( +g𝑊 ) ( 𝑚 · 𝑈 ) ) )
26 18 23 25 3eqtr3d ( ( ( 𝜑𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 · 𝑈 ) ( +g𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g𝑊 ) ( 𝑚 · 𝑈 ) ) )
27 26 adantllr ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 · 𝑈 ) ( +g𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g𝑊 ) ( 𝑚 · 𝑈 ) ) )
28 27 adantlr ( ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑚 · 𝑈 ) ( +g𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g𝑊 ) ( 𝑚 · 𝑈 ) ) )
29 28 adantr ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( ( 𝑚 · 𝑈 ) ( +g𝑊 ) ( 𝑛 · 𝑈 ) ) = ( ( 𝑛 · 𝑈 ) ( +g𝑊 ) ( 𝑚 · 𝑈 ) ) )
30 simpllr ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → 𝑦 = ( 𝑚 · 𝑈 ) )
31 simpr ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → 𝑧 = ( 𝑛 · 𝑈 ) )
32 30 31 oveq12d ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( 𝑦 ( +g𝑊 ) 𝑧 ) = ( ( 𝑚 · 𝑈 ) ( +g𝑊 ) ( 𝑛 · 𝑈 ) ) )
33 31 30 oveq12d ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( 𝑧 ( +g𝑊 ) 𝑦 ) = ( ( 𝑛 · 𝑈 ) ( +g𝑊 ) ( 𝑚 · 𝑈 ) ) )
34 29 32 33 3eqtr4d ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ∧ 𝑛 ∈ ℤ ) ∧ 𝑧 = ( 𝑛 · 𝑈 ) ) → ( 𝑦 ( +g𝑊 ) 𝑧 ) = ( 𝑧 ( +g𝑊 ) 𝑦 ) )
35 simplll ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → 𝜑 )
36 simpr1r ( ( 𝜑 ∧ ( ( 𝑦𝐵𝑧𝐵 ) ∧ 𝑚 ∈ ℤ ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) ) → 𝑧𝐵 )
37 36 3anassrs ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → 𝑧𝐵 )
38 1 2 3 4 5 6 7 8 9 10 archiabllem1b ( ( 𝜑𝑧𝐵 ) → ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑈 ) )
39 35 37 38 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑈 ) )
40 34 39 r19.29a ( ( ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑦 = ( 𝑚 · 𝑈 ) ) → ( 𝑦 ( +g𝑊 ) 𝑧 ) = ( 𝑧 ( +g𝑊 ) 𝑦 ) )
41 1 2 3 4 5 6 7 8 9 10 archiabllem1b ( ( 𝜑𝑦𝐵 ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑈 ) )
42 41 adantrr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑈 ) )
43 40 42 r19.29a ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵 ) ) → ( 𝑦 ( +g𝑊 ) 𝑧 ) = ( 𝑧 ( +g𝑊 ) 𝑦 ) )
44 43 ralrimivva ( 𝜑 → ∀ 𝑦𝐵𝑧𝐵 ( 𝑦 ( +g𝑊 ) 𝑧 ) = ( 𝑧 ( +g𝑊 ) 𝑦 ) )
45 1 21 isabl2 ( 𝑊 ∈ Abel ↔ ( 𝑊 ∈ Grp ∧ ∀ 𝑦𝐵𝑧𝐵 ( 𝑦 ( +g𝑊 ) 𝑧 ) = ( 𝑧 ( +g𝑊 ) 𝑦 ) ) )
46 12 44 45 sylanbrc ( 𝜑𝑊 ∈ Abel )