Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
archiabllem.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
archiabllem.e |
⊢ ≤ = ( le ‘ 𝑊 ) |
4 |
|
archiabllem.t |
⊢ < = ( lt ‘ 𝑊 ) |
5 |
|
archiabllem.m |
⊢ · = ( .g ‘ 𝑊 ) |
6 |
|
archiabllem.g |
⊢ ( 𝜑 → 𝑊 ∈ oGrp ) |
7 |
|
archiabllem.a |
⊢ ( 𝜑 → 𝑊 ∈ Archi ) |
8 |
|
archiabllem2.1 |
⊢ + = ( +g ‘ 𝑊 ) |
9 |
|
archiabllem2.2 |
⊢ ( 𝜑 → ( oppg ‘ 𝑊 ) ∈ oGrp ) |
10 |
|
archiabllem2.3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎 ) → ∃ 𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎 ) ) |
11 |
|
archiabllem2b.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
12 |
|
archiabllem2b.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
archiabllem2c |
⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) < ( 𝑌 + 𝑋 ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 12 11
|
archiabllem2c |
⊢ ( 𝜑 → ¬ ( 𝑌 + 𝑋 ) < ( 𝑋 + 𝑌 ) ) |
15 |
|
isogrp |
⊢ ( 𝑊 ∈ oGrp ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd ) ) |
16 |
15
|
simprbi |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ oMnd ) |
17 |
|
omndtos |
⊢ ( 𝑊 ∈ oMnd → 𝑊 ∈ Toset ) |
18 |
6 16 17
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Toset ) |
19 |
|
ogrpgrp |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ Grp ) |
20 |
6 19
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
21 |
1 8
|
grpcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
22 |
20 11 12 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
23 |
1 8
|
grpcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 + 𝑋 ) ∈ 𝐵 ) |
24 |
20 12 11 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑋 ) ∈ 𝐵 ) |
25 |
1 4
|
tlt3 |
⊢ ( ( 𝑊 ∈ Toset ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑌 + 𝑋 ) ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ∨ ( 𝑋 + 𝑌 ) < ( 𝑌 + 𝑋 ) ∨ ( 𝑌 + 𝑋 ) < ( 𝑋 + 𝑌 ) ) ) |
26 |
18 22 24 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ∨ ( 𝑋 + 𝑌 ) < ( 𝑌 + 𝑋 ) ∨ ( 𝑌 + 𝑋 ) < ( 𝑋 + 𝑌 ) ) ) |
27 |
13 14 26
|
ecase23d |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |