| Step | Hyp | Ref | Expression | 
						
							| 1 |  | archiabllem.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | archiabllem.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 3 |  | archiabllem.e | ⊢  ≤   =  ( le ‘ 𝑊 ) | 
						
							| 4 |  | archiabllem.t | ⊢  <   =  ( lt ‘ 𝑊 ) | 
						
							| 5 |  | archiabllem.m | ⊢  ·   =  ( .g ‘ 𝑊 ) | 
						
							| 6 |  | archiabllem.g | ⊢ ( 𝜑  →  𝑊  ∈  oGrp ) | 
						
							| 7 |  | archiabllem.a | ⊢ ( 𝜑  →  𝑊  ∈  Archi ) | 
						
							| 8 |  | archiabllem2.1 | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 9 |  | archiabllem2.2 | ⊢ ( 𝜑  →  ( oppg ‘ 𝑊 )  ∈  oGrp ) | 
						
							| 10 |  | archiabllem2.3 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧   0   <  𝑎 )  →  ∃ 𝑏  ∈  𝐵 (  0   <  𝑏  ∧  𝑏  <  𝑎 ) ) | 
						
							| 11 |  | archiabllem2b.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 12 |  | archiabllem2b.5 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 13 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵 )  ∧  (  0   <  𝑡  ∧  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) )  →  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 14 |  | simpl1l | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝜑 ) | 
						
							| 15 | 14 6 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑊  ∈  oGrp ) | 
						
							| 16 |  | simpl1r | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  𝑊  ∈  oGrp ) | 
						
							| 18 |  | ogrpgrp | ⊢ ( 𝑊  ∈  oGrp  →  𝑊  ∈  Grp ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  𝑊  ∈  Grp ) | 
						
							| 20 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 21 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 22 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑌  +  𝑋 )  ∈  𝐵 ) | 
						
							| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( 𝑌  +  𝑋 )  ∈  𝐵 ) | 
						
							| 24 | 14 16 23 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑌  +  𝑋 )  ∈  𝐵 ) | 
						
							| 25 | 14 6 18 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑊  ∈  Grp ) | 
						
							| 26 |  | simpr2 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 27 | 26 | peano2zd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑚  +  1 )  ∈  ℤ ) | 
						
							| 28 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  𝑡  ∈  𝐵 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑡  ∈  𝐵 ) | 
						
							| 30 | 1 5 | mulgcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑚  +  1 )  ∈  ℤ  ∧  𝑡  ∈  𝐵 )  →  ( ( 𝑚  +  1 )  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 31 | 25 27 29 30 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑚  +  1 )  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 32 |  | simpr1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 33 | 32 | peano2zd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℤ ) | 
						
							| 34 | 1 5 | mulgcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑛  +  1 )  ∈  ℤ  ∧  𝑡  ∈  𝐵 )  →  ( ( 𝑛  +  1 )  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 35 | 25 33 29 34 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  +  1 )  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 36 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( ( 𝑚  +  1 )  ·  𝑡 )  ∈  𝐵  ∧  ( ( 𝑛  +  1 )  ·  𝑡 )  ∈  𝐵 )  →  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 37 | 25 31 35 36 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 38 | 21 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  𝑋  ∈  𝐵 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 40 | 20 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  𝑌  ∈  𝐵 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 42 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 43 | 25 39 41 42 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 44 |  | isogrp | ⊢ ( 𝑊  ∈  oGrp  ↔  ( 𝑊  ∈  Grp  ∧  𝑊  ∈  oMnd ) ) | 
						
							| 45 | 44 | simprbi | ⊢ ( 𝑊  ∈  oGrp  →  𝑊  ∈  oMnd ) | 
						
							| 46 | 14 6 45 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑊  ∈  oMnd ) | 
						
							| 47 |  | simpr3 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) | 
						
							| 48 | 47 | simprd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) | 
						
							| 49 | 48 | simprd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) | 
						
							| 50 | 47 | simpld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ) | 
						
							| 51 | 50 | simprd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) ) | 
						
							| 52 |  | isogrp | ⊢ ( ( oppg ‘ 𝑊 )  ∈  oGrp  ↔  ( ( oppg ‘ 𝑊 )  ∈  Grp  ∧  ( oppg ‘ 𝑊 )  ∈  oMnd ) ) | 
						
							| 53 | 52 | simprbi | ⊢ ( ( oppg ‘ 𝑊 )  ∈  oGrp  →  ( oppg ‘ 𝑊 )  ∈  oMnd ) | 
						
							| 54 | 14 9 53 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( oppg ‘ 𝑊 )  ∈  oMnd ) | 
						
							| 55 | 1 3 8 46 35 41 39 31 49 51 54 | omndadd2rd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑌  +  𝑋 )  ≤  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ) | 
						
							| 56 |  | eqid | ⊢ ( -g ‘ 𝑊 )  =  ( -g ‘ 𝑊 ) | 
						
							| 57 | 1 3 56 | ogrpsub | ⊢ ( ( 𝑊  ∈  oGrp  ∧  ( ( 𝑌  +  𝑋 )  ∈  𝐵  ∧  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∈  𝐵  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  ∧  ( 𝑌  +  𝑋 )  ≤  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ≤  ( ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 58 | 15 24 37 43 55 57 | syl131anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ≤  ( ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 59 | 26 | zcnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 60 | 32 | zcnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 61 |  | 1cnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  1  ∈  ℂ ) | 
						
							| 62 | 59 60 61 61 | add4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑚  +  𝑛 )  +  ( 1  +  1 ) )  =  ( ( 𝑚  +  1 )  +  ( 𝑛  +  1 ) ) ) | 
						
							| 63 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 64 | 63 | oveq2i | ⊢ ( ( 𝑚  +  𝑛 )  +  ( 1  +  1 ) )  =  ( ( 𝑚  +  𝑛 )  +  2 ) | 
						
							| 65 |  | addcom | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( 𝑚  +  𝑛 )  =  ( 𝑛  +  𝑚 ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( 𝑚  +  𝑛 )  +  2 )  =  ( ( 𝑛  +  𝑚 )  +  2 ) ) | 
						
							| 67 | 64 66 | eqtrid | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( 𝑚  +  𝑛 )  +  ( 1  +  1 ) )  =  ( ( 𝑛  +  𝑚 )  +  2 ) ) | 
						
							| 68 |  | 2cnd | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  2  ∈  ℂ ) | 
						
							| 69 |  | simpr | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  𝑛  ∈  ℂ ) | 
						
							| 70 |  | simpl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  𝑚  ∈  ℂ ) | 
						
							| 71 | 69 70 | addcld | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( 𝑛  +  𝑚 )  ∈  ℂ ) | 
						
							| 72 | 68 71 | addcomd | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( 2  +  ( 𝑛  +  𝑚 ) )  =  ( ( 𝑛  +  𝑚 )  +  2 ) ) | 
						
							| 73 | 67 72 | eqtr4d | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( 𝑚  +  𝑛 )  +  ( 1  +  1 ) )  =  ( 2  +  ( 𝑛  +  𝑚 ) ) ) | 
						
							| 74 | 59 60 73 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑚  +  𝑛 )  +  ( 1  +  1 ) )  =  ( 2  +  ( 𝑛  +  𝑚 ) ) ) | 
						
							| 75 | 62 74 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑚  +  1 )  +  ( 𝑛  +  1 ) )  =  ( 2  +  ( 𝑛  +  𝑚 ) ) ) | 
						
							| 76 | 75 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑚  +  1 )  +  ( 𝑛  +  1 ) )  ·  𝑡 )  =  ( ( 2  +  ( 𝑛  +  𝑚 ) )  ·  𝑡 ) ) | 
						
							| 77 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 78 | 77 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  2  ∈  ℤ ) | 
						
							| 79 | 32 26 | zaddcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑛  +  𝑚 )  ∈  ℤ ) | 
						
							| 80 | 1 5 8 | mulgdir | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 2  ∈  ℤ  ∧  ( 𝑛  +  𝑚 )  ∈  ℤ  ∧  𝑡  ∈  𝐵 ) )  →  ( ( 2  +  ( 𝑛  +  𝑚 ) )  ·  𝑡 )  =  ( ( 2  ·  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 81 | 25 78 79 29 80 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 2  +  ( 𝑛  +  𝑚 ) )  ·  𝑡 )  =  ( ( 2  ·  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 82 | 76 81 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑚  +  1 )  +  ( 𝑛  +  1 ) )  ·  𝑡 )  =  ( ( 2  ·  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 83 | 1 5 8 | mulgdir | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( ( 𝑚  +  1 )  ∈  ℤ  ∧  ( 𝑛  +  1 )  ∈  ℤ  ∧  𝑡  ∈  𝐵 ) )  →  ( ( ( 𝑚  +  1 )  +  ( 𝑛  +  1 ) )  ·  𝑡 )  =  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ) | 
						
							| 84 | 25 27 33 29 83 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑚  +  1 )  +  ( 𝑛  +  1 ) )  ·  𝑡 )  =  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ) | 
						
							| 85 | 1 5 8 | mulg2 | ⊢ ( 𝑡  ∈  𝐵  →  ( 2  ·  𝑡 )  =  ( 𝑡  +  𝑡 ) ) | 
						
							| 86 | 29 85 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 2  ·  𝑡 )  =  ( 𝑡  +  𝑡 ) ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 2  ·  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  =  ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 88 | 82 84 87 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) )  =  ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( ( 𝑚  +  1 )  ·  𝑡 )  +  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  =  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 90 | 58 89 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ≤  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 91 | 88 37 | eqeltrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 92 |  | eqid | ⊢ ( invg ‘ 𝑊 )  =  ( invg ‘ 𝑊 ) | 
						
							| 93 | 1 8 92 56 | grpsubval | ⊢ ( ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  ∈  𝐵  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  =  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 94 | 91 43 93 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  =  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 95 | 90 94 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ≤  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 96 | 14 9 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( oppg ‘ 𝑊 )  ∈  oGrp ) | 
						
							| 97 | 1 92 | grpinvcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  →  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) )  ∈  𝐵 ) | 
						
							| 98 | 25 43 97 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) )  ∈  𝐵 ) | 
						
							| 99 | 79 | znegcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  - ( 𝑛  +  𝑚 )  ∈  ℤ ) | 
						
							| 100 | 1 5 | mulgcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  - ( 𝑛  +  𝑚 )  ∈  ℤ  ∧  𝑡  ∈  𝐵 )  →  ( - ( 𝑛  +  𝑚 )  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 101 | 25 99 29 100 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( - ( 𝑛  +  𝑚 )  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 102 | 1 5 8 | mulgdir | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  𝑡  ∈  𝐵 ) )  →  ( ( 𝑛  +  𝑚 )  ·  𝑡 )  =  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) ) ) | 
						
							| 103 | 25 32 26 29 102 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  +  𝑚 )  ·  𝑡 )  =  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) ) ) | 
						
							| 104 | 1 5 | mulgcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑛  ∈  ℤ  ∧  𝑡  ∈  𝐵 )  →  ( 𝑛  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 105 | 25 32 29 104 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑛  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 106 | 1 5 | mulgcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑚  ∈  ℤ  ∧  𝑡  ∈  𝐵 )  →  ( 𝑚  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 107 | 25 26 29 106 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑚  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 108 | 50 | simpld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑛  ·  𝑡 )  <  𝑋 ) | 
						
							| 109 | 1 4 8 | ogrpaddlt | ⊢ ( ( 𝑊  ∈  oGrp  ∧  ( ( 𝑛  ·  𝑡 )  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  ( 𝑚  ·  𝑡 )  ∈  𝐵 )  ∧  ( 𝑛  ·  𝑡 )  <  𝑋 )  →  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  ( 𝑚  ·  𝑡 ) ) ) | 
						
							| 110 | 15 105 39 107 108 109 | syl131anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  ( 𝑚  ·  𝑡 ) ) ) | 
						
							| 111 | 48 | simpld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑚  ·  𝑡 )  <  𝑌 ) | 
						
							| 112 | 1 4 8 15 96 107 41 39 111 | ogrpaddltrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  𝑌 ) ) | 
						
							| 113 |  | omndtos | ⊢ ( 𝑊  ∈  oMnd  →  𝑊  ∈  Toset ) | 
						
							| 114 |  | tospos | ⊢ ( 𝑊  ∈  Toset  →  𝑊  ∈  Poset ) | 
						
							| 115 | 46 113 114 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  𝑊  ∈  Poset ) | 
						
							| 116 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑛  ·  𝑡 )  ∈  𝐵  ∧  ( 𝑚  ·  𝑡 )  ∈  𝐵 )  →  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 117 | 25 105 107 116 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 118 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  ( 𝑚  ·  𝑡 )  ∈  𝐵 )  →  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 119 | 25 39 107 118 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 120 | 1 4 | plttr | ⊢ ( ( 𝑊  ∈  Poset  ∧  ( ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  ∈  𝐵  ∧  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  ∈  𝐵  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 ) )  →  ( ( ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  ∧  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  𝑌 ) )  →  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  𝑌 ) ) ) | 
						
							| 121 | 115 117 119 43 120 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  ∧  ( 𝑋  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  𝑌 ) )  →  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  𝑌 ) ) ) | 
						
							| 122 | 110 112 121 | mp2and | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  ·  𝑡 )  +  ( 𝑚  ·  𝑡 ) )  <  ( 𝑋  +  𝑌 ) ) | 
						
							| 123 | 103 122 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  +  𝑚 )  ·  𝑡 )  <  ( 𝑋  +  𝑌 ) ) | 
						
							| 124 | 103 117 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  +  𝑚 )  ·  𝑡 )  ∈  𝐵 ) | 
						
							| 125 | 1 4 92 | ogrpinvlt | ⊢ ( ( ( 𝑊  ∈  oGrp  ∧  ( oppg ‘ 𝑊 )  ∈  oGrp )  ∧  ( ( 𝑛  +  𝑚 )  ·  𝑡 )  ∈  𝐵  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  →  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  <  ( 𝑋  +  𝑌 )  ↔  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) )  <  ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) ) | 
						
							| 126 | 15 96 124 43 125 | syl211anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  <  ( 𝑋  +  𝑌 )  ↔  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) )  <  ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) ) | 
						
							| 127 | 123 126 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) )  <  ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 128 | 1 5 92 | mulgneg | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑛  +  𝑚 )  ∈  ℤ  ∧  𝑡  ∈  𝐵 )  →  ( - ( 𝑛  +  𝑚 )  ·  𝑡 )  =  ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 129 | 25 79 29 128 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( - ( 𝑛  +  𝑚 )  ·  𝑡 )  =  ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 130 | 127 129 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) )  <  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) | 
						
							| 131 | 1 4 8 15 96 98 101 91 130 | ogrpaddltrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  <  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 132 | 1 56 | grpsubcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑌  +  𝑋 )  ∈  𝐵  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ∈  𝐵 ) | 
						
							| 133 | 25 24 43 132 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ∈  𝐵 ) | 
						
							| 134 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  ∈  𝐵  ∧  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) )  ∈  𝐵 )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  ∈  𝐵 ) | 
						
							| 135 | 25 91 98 134 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  ∈  𝐵 ) | 
						
							| 136 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  ∈  𝐵  ∧  ( - ( 𝑛  +  𝑚 )  ·  𝑡 )  ∈  𝐵 )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 137 | 25 91 101 136 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) )  ∈  𝐵 ) | 
						
							| 138 | 1 3 4 | plelttr | ⊢ ( ( 𝑊  ∈  Poset  ∧  ( ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ∈  𝐵  ∧  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  ∈  𝐵  ∧  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) )  ∈  𝐵 ) )  →  ( ( ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ≤  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  ∧  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  <  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) ) | 
						
							| 139 | 115 133 135 137 138 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ≤  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  ∧  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  +  𝑌 ) ) )  <  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) ) | 
						
							| 140 | 95 131 139 | mp2and | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 141 | 1 8 | grpcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑡  ∈  𝐵  ∧  𝑡  ∈  𝐵 )  →  ( 𝑡  +  𝑡 )  ∈  𝐵 ) | 
						
							| 142 | 25 29 29 141 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑡  +  𝑡 )  ∈  𝐵 ) | 
						
							| 143 | 1 8 | grpass | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( ( 𝑡  +  𝑡 )  ∈  𝐵  ∧  ( ( 𝑛  +  𝑚 )  ·  𝑡 )  ∈  𝐵  ∧  ( - ( 𝑛  +  𝑚 )  ·  𝑡 )  ∈  𝐵 ) )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) )  =  ( ( 𝑡  +  𝑡 )  +  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) ) | 
						
							| 144 | 25 142 124 101 143 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) )  =  ( ( 𝑡  +  𝑡 )  +  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) ) | 
						
							| 145 | 60 59 | addcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 𝑛  +  𝑚 )  ∈  ℂ ) | 
						
							| 146 | 145 | negidd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑛  +  𝑚 )  +  - ( 𝑛  +  𝑚 ) )  =  0 ) | 
						
							| 147 | 146 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑛  +  𝑚 )  +  - ( 𝑛  +  𝑚 ) )  ·  𝑡 )  =  ( 0  ·  𝑡 ) ) | 
						
							| 148 | 1 5 8 | mulgdir | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( ( 𝑛  +  𝑚 )  ∈  ℤ  ∧  - ( 𝑛  +  𝑚 )  ∈  ℤ  ∧  𝑡  ∈  𝐵 ) )  →  ( ( ( 𝑛  +  𝑚 )  +  - ( 𝑛  +  𝑚 ) )  ·  𝑡 )  =  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 149 | 25 79 99 29 148 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑛  +  𝑚 )  +  - ( 𝑛  +  𝑚 ) )  ·  𝑡 )  =  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) ) | 
						
							| 150 | 1 2 5 | mulg0 | ⊢ ( 𝑡  ∈  𝐵  →  ( 0  ·  𝑡 )  =   0  ) | 
						
							| 151 | 29 150 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( 0  ·  𝑡 )  =   0  ) | 
						
							| 152 | 147 149 151 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) )  =   0  ) | 
						
							| 153 | 152 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑡  +  𝑡 )  +  ( ( ( 𝑛  +  𝑚 )  ·  𝑡 )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) ) )  =  ( ( 𝑡  +  𝑡 )  +   0  ) ) | 
						
							| 154 | 1 8 2 | grprid | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑡  +  𝑡 )  ∈  𝐵 )  →  ( ( 𝑡  +  𝑡 )  +   0  )  =  ( 𝑡  +  𝑡 ) ) | 
						
							| 155 | 25 142 154 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑡  +  𝑡 )  +   0  )  =  ( 𝑡  +  𝑡 ) ) | 
						
							| 156 | 144 153 155 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( ( 𝑡  +  𝑡 )  +  ( ( 𝑛  +  𝑚 )  ·  𝑡 ) )  +  ( - ( 𝑛  +  𝑚 )  ·  𝑡 ) )  =  ( 𝑡  +  𝑡 ) ) | 
						
							| 157 | 140 156 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( 𝑡  +  𝑡 ) ) | 
						
							| 158 | 157 | 3anassrs | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  ∧  𝑛  ∈  ℤ )  ∧  𝑚  ∈  ℤ )  ∧  ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( 𝑡  +  𝑡 ) ) | 
						
							| 159 | 17 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  𝑊  ∈  oGrp ) | 
						
							| 160 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  𝑊  ∈  Archi ) | 
						
							| 161 | 160 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  𝑊  ∈  Archi ) | 
						
							| 162 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →   0   <  𝑡 ) | 
						
							| 163 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( oppg ‘ 𝑊 )  ∈  oGrp ) | 
						
							| 164 | 163 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ( oppg ‘ 𝑊 )  ∈  oGrp ) | 
						
							| 165 | 1 2 4 3 5 159 161 28 38 162 164 | archirngz | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ∃ 𝑛  ∈  ℤ ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) ) ) | 
						
							| 166 | 1 2 4 3 5 159 161 28 40 162 164 | archirngz | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ∃ 𝑚  ∈  ℤ ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) | 
						
							| 167 |  | reeanv | ⊢ ( ∃ 𝑛  ∈  ℤ ∃ 𝑚  ∈  ℤ ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) )  ↔  ( ∃ 𝑛  ∈  ℤ ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ∃ 𝑚  ∈  ℤ ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) | 
						
							| 168 | 165 166 167 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ∃ 𝑛  ∈  ℤ ∃ 𝑚  ∈  ℤ ( ( ( 𝑛  ·  𝑡 )  <  𝑋  ∧  𝑋  ≤  ( ( 𝑛  +  1 )  ·  𝑡 ) )  ∧  ( ( 𝑚  ·  𝑡 )  <  𝑌  ∧  𝑌  ≤  ( ( 𝑚  +  1 )  ·  𝑡 ) ) ) ) | 
						
							| 169 | 158 168 | r19.29vva | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( 𝑡  +  𝑡 ) ) | 
						
							| 170 | 159 45 113 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  𝑊  ∈  Toset ) | 
						
							| 171 | 19 21 20 42 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 172 | 19 23 171 132 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ∈  𝐵 ) | 
						
							| 173 | 172 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ∈  𝐵 ) | 
						
							| 174 | 159 18 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  𝑊  ∈  Grp ) | 
						
							| 175 | 174 28 28 141 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ( 𝑡  +  𝑡 )  ∈  𝐵 ) | 
						
							| 176 | 1 3 4 | tltnle | ⊢ ( ( 𝑊  ∈  Toset  ∧  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  ∈  𝐵  ∧  ( 𝑡  +  𝑡 )  ∈  𝐵 )  →  ( ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( 𝑡  +  𝑡 )  ↔  ¬  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 177 | 170 173 175 176 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ( ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( 𝑡  +  𝑡 )  ↔  ¬  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 178 | 169 177 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵  ∧   0   <  𝑡 )  →  ¬  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 179 | 178 | 3expa | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵 )  ∧   0   <  𝑡 )  →  ¬  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 180 | 179 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵 )  ∧  (  0   <  𝑡  ∧  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) )  →  ¬  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 181 | 13 180 | pm2.21fal | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑡  ∈  𝐵 )  ∧  (  0   <  𝑡  ∧  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) )  →  ⊥ ) | 
						
							| 182 | 10 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  ∧  𝑎  ∈  𝐵  ∧   0   <  𝑎 )  →  ∃ 𝑏  ∈  𝐵 (  0   <  𝑏  ∧  𝑏  <  𝑎 ) ) | 
						
							| 183 | 1 2 56 | grpsubid | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  =   0  ) | 
						
							| 184 | 19 171 183 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  =   0  ) | 
						
							| 185 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) ) | 
						
							| 186 | 1 4 56 | ogrpsublt | ⊢ ( ( 𝑊  ∈  oGrp  ∧  ( ( 𝑋  +  𝑌 )  ∈  𝐵  ∧  ( 𝑌  +  𝑋 )  ∈  𝐵  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 187 | 17 171 23 171 185 186 | syl131anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) )  <  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 188 | 184 187 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →   0   <  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) | 
						
							| 189 | 1 2 3 4 5 17 160 8 163 182 172 188 | archiabllem2a | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ∃ 𝑡  ∈  𝐵 (  0   <  𝑡  ∧  ( 𝑡  +  𝑡 )  ≤  ( ( 𝑌  +  𝑋 ) ( -g ‘ 𝑊 ) ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 190 | 181 189 | r19.29a | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) )  →  ⊥ ) | 
						
							| 191 | 190 | inegd | ⊢ ( 𝜑  →  ¬  ( 𝑋  +  𝑌 )  <  ( 𝑌  +  𝑋 ) ) |