Metamath Proof Explorer


Theorem archiabllem2c

Description: Lemma for archiabl . (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Hypotheses archiabllem.b B=BaseW
archiabllem.0 0˙=0W
archiabllem.e ˙=W
archiabllem.t <˙=<W
archiabllem.m ·˙=W
archiabllem.g φWoGrp
archiabllem.a φWArchi
archiabllem2.1 +˙=+W
archiabllem2.2 φopp𝑔WoGrp
archiabllem2.3 φaB0˙<˙abB0˙<˙bb<˙a
archiabllem2b.4 φXB
archiabllem2b.5 φYB
Assertion archiabllem2c φ¬X+˙Y<˙Y+˙X

Proof

Step Hyp Ref Expression
1 archiabllem.b B=BaseW
2 archiabllem.0 0˙=0W
3 archiabllem.e ˙=W
4 archiabllem.t <˙=<W
5 archiabllem.m ·˙=W
6 archiabllem.g φWoGrp
7 archiabllem.a φWArchi
8 archiabllem2.1 +˙=+W
9 archiabllem2.2 φopp𝑔WoGrp
10 archiabllem2.3 φaB0˙<˙abB0˙<˙bb<˙a
11 archiabllem2b.4 φXB
12 archiabllem2b.5 φYB
13 simprr φX+˙Y<˙Y+˙XtB0˙<˙tt+˙t˙Y+˙X-WX+˙Yt+˙t˙Y+˙X-WX+˙Y
14 simpl1l φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tφ
15 14 6 syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tWoGrp
16 simpl1r φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tX+˙Y<˙Y+˙X
17 6 adantr φX+˙Y<˙Y+˙XWoGrp
18 ogrpgrp WoGrpWGrp
19 17 18 syl φX+˙Y<˙Y+˙XWGrp
20 12 adantr φX+˙Y<˙Y+˙XYB
21 11 adantr φX+˙Y<˙Y+˙XXB
22 1 8 grpcl WGrpYBXBY+˙XB
23 19 20 21 22 syl3anc φX+˙Y<˙Y+˙XY+˙XB
24 14 16 23 syl2anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙XB
25 14 6 18 3syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tWGrp
26 simpr2 φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm
27 26 peano2zd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1
28 simp2 φX+˙Y<˙Y+˙XtB0˙<˙ttB
29 28 adantr φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙ttB
30 1 5 mulgcl WGrpm+1tBm+1·˙tB
31 25 27 29 30 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1·˙tB
32 simpr1 φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn
33 32 peano2zd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+1
34 1 5 mulgcl WGrpn+1tBn+1·˙tB
35 25 33 29 34 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+1·˙tB
36 1 8 grpcl WGrpm+1·˙tBn+1·˙tBm+1·˙t+˙n+1·˙tB
37 25 31 35 36 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1·˙t+˙n+1·˙tB
38 21 3ad2ant1 φX+˙Y<˙Y+˙XtB0˙<˙tXB
39 38 adantr φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tXB
40 20 3ad2ant1 φX+˙Y<˙Y+˙XtB0˙<˙tYB
41 40 adantr φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tYB
42 1 8 grpcl WGrpXBYBX+˙YB
43 25 39 41 42 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tX+˙YB
44 isogrp WoGrpWGrpWoMnd
45 44 simprbi WoGrpWoMnd
46 14 6 45 3syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tWoMnd
47 simpr3 φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t
48 47 simprd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm·˙t<˙YY˙m+1·˙t
49 48 simprd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY˙m+1·˙t
50 47 simpld φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙t<˙XX˙n+1·˙t
51 50 simprd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tX˙n+1·˙t
52 isogrp opp𝑔WoGrpopp𝑔WGrpopp𝑔WoMnd
53 52 simprbi opp𝑔WoGrpopp𝑔WoMnd
54 14 9 53 3syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙topp𝑔WoMnd
55 1 3 8 46 35 41 39 31 49 51 54 omndadd2rd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X˙m+1·˙t+˙n+1·˙t
56 eqid -W=-W
57 1 3 56 ogrpsub WoGrpY+˙XBm+1·˙t+˙n+1·˙tBX+˙YBY+˙X˙m+1·˙t+˙n+1·˙tY+˙X-WX+˙Y˙m+1·˙t+˙n+1·˙t-WX+˙Y
58 15 24 37 43 55 57 syl131anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙Y˙m+1·˙t+˙n+1·˙t-WX+˙Y
59 26 zcnd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm
60 32 zcnd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn
61 1cnd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t1
62 59 60 61 61 add4d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+n+1+1=m+1+n+1
63 1p1e2 1+1=2
64 63 oveq2i m+n+1+1=m+n+2
65 addcom mnm+n=n+m
66 65 oveq1d mnm+n+2=n+m+2
67 64 66 eqtrid mnm+n+1+1=n+m+2
68 2cnd mn2
69 simpr mnn
70 simpl mnm
71 69 70 addcld mnn+m
72 68 71 addcomd mn2+n+m=n+m+2
73 67 72 eqtr4d mnm+n+1+1=2+n+m
74 59 60 73 syl2anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+n+1+1=2+n+m
75 62 74 eqtr3d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1+n+1=2+n+m
76 75 oveq1d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1+n+1·˙t=2+n+m·˙t
77 2z 2
78 77 a1i φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t2
79 32 26 zaddcld φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m
80 1 5 8 mulgdir WGrp2n+mtB2+n+m·˙t=2·˙t+˙n+m·˙t
81 25 78 79 29 80 syl13anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t2+n+m·˙t=2·˙t+˙n+m·˙t
82 76 81 eqtrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1+n+1·˙t=2·˙t+˙n+m·˙t
83 1 5 8 mulgdir WGrpm+1n+1tBm+1+n+1·˙t=m+1·˙t+˙n+1·˙t
84 25 27 33 29 83 syl13anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1+n+1·˙t=m+1·˙t+˙n+1·˙t
85 1 5 8 mulg2 tB2·˙t=t+˙t
86 29 85 syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t2·˙t=t+˙t
87 86 oveq1d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t2·˙t+˙n+m·˙t=t+˙t+˙n+m·˙t
88 82 84 87 3eqtr3d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1·˙t+˙n+1·˙t=t+˙t+˙n+m·˙t
89 88 oveq1d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm+1·˙t+˙n+1·˙t-WX+˙Y=t+˙t+˙n+m·˙t-WX+˙Y
90 58 89 breqtrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙Y˙t+˙t+˙n+m·˙t-WX+˙Y
91 88 37 eqeltrrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙tB
92 eqid invgW=invgW
93 1 8 92 56 grpsubval t+˙t+˙n+m·˙tBX+˙YBt+˙t+˙n+m·˙t-WX+˙Y=t+˙t+˙n+m·˙t+˙invgWX+˙Y
94 91 43 93 syl2anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙t-WX+˙Y=t+˙t+˙n+m·˙t+˙invgWX+˙Y
95 90 94 breqtrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙Y˙t+˙t+˙n+m·˙t+˙invgWX+˙Y
96 14 9 syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙topp𝑔WoGrp
97 1 92 grpinvcl WGrpX+˙YBinvgWX+˙YB
98 25 43 97 syl2anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tinvgWX+˙YB
99 79 znegcld φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m
100 1 5 mulgcl WGrpn+mtBn+m·˙tB
101 25 99 29 100 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m·˙tB
102 1 5 8 mulgdir WGrpnmtBn+m·˙t=n·˙t+˙m·˙t
103 25 32 26 29 102 syl13anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m·˙t=n·˙t+˙m·˙t
104 1 5 mulgcl WGrpntBn·˙tB
105 25 32 29 104 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙tB
106 1 5 mulgcl WGrpmtBm·˙tB
107 25 26 29 106 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm·˙tB
108 50 simpld φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙t<˙X
109 1 4 8 ogrpaddlt WoGrpn·˙tBXBm·˙tBn·˙t<˙Xn·˙t+˙m·˙t<˙X+˙m·˙t
110 15 105 39 107 108 109 syl131anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙t+˙m·˙t<˙X+˙m·˙t
111 48 simpld φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tm·˙t<˙Y
112 1 4 8 15 96 107 41 39 111 ogrpaddltrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tX+˙m·˙t<˙X+˙Y
113 omndtos WoMndWToset
114 tospos WTosetWPoset
115 46 113 114 3syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tWPoset
116 1 8 grpcl WGrpn·˙tBm·˙tBn·˙t+˙m·˙tB
117 25 105 107 116 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙t+˙m·˙tB
118 1 8 grpcl WGrpXBm·˙tBX+˙m·˙tB
119 25 39 107 118 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tX+˙m·˙tB
120 1 4 plttr WPosetn·˙t+˙m·˙tBX+˙m·˙tBX+˙YBn·˙t+˙m·˙t<˙X+˙m·˙tX+˙m·˙t<˙X+˙Yn·˙t+˙m·˙t<˙X+˙Y
121 115 117 119 43 120 syl13anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙t+˙m·˙t<˙X+˙m·˙tX+˙m·˙t<˙X+˙Yn·˙t+˙m·˙t<˙X+˙Y
122 110 112 121 mp2and φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn·˙t+˙m·˙t<˙X+˙Y
123 103 122 eqbrtrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m·˙t<˙X+˙Y
124 103 117 eqeltrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m·˙tB
125 1 4 92 ogrpinvlt WoGrpopp𝑔WoGrpn+m·˙tBX+˙YBn+m·˙t<˙X+˙YinvgWX+˙Y<˙invgWn+m·˙t
126 15 96 124 43 125 syl211anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m·˙t<˙X+˙YinvgWX+˙Y<˙invgWn+m·˙t
127 123 126 mpbid φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tinvgWX+˙Y<˙invgWn+m·˙t
128 1 5 92 mulgneg WGrpn+mtBn+m·˙t=invgWn+m·˙t
129 25 79 29 128 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m·˙t=invgWn+m·˙t
130 127 129 breqtrrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tinvgWX+˙Y<˙n+m·˙t
131 1 4 8 15 96 98 101 91 130 ogrpaddltrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙t+˙invgWX+˙Y<˙t+˙t+˙n+m·˙t+˙n+m·˙t
132 1 56 grpsubcl WGrpY+˙XBX+˙YBY+˙X-WX+˙YB
133 25 24 43 132 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙YB
134 1 8 grpcl WGrpt+˙t+˙n+m·˙tBinvgWX+˙YBt+˙t+˙n+m·˙t+˙invgWX+˙YB
135 25 91 98 134 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙t+˙invgWX+˙YB
136 1 8 grpcl WGrpt+˙t+˙n+m·˙tBn+m·˙tBt+˙t+˙n+m·˙t+˙n+m·˙tB
137 25 91 101 136 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙t+˙n+m·˙tB
138 1 3 4 plelttr WPosetY+˙X-WX+˙YBt+˙t+˙n+m·˙t+˙invgWX+˙YBt+˙t+˙n+m·˙t+˙n+m·˙tBY+˙X-WX+˙Y˙t+˙t+˙n+m·˙t+˙invgWX+˙Yt+˙t+˙n+m·˙t+˙invgWX+˙Y<˙t+˙t+˙n+m·˙t+˙n+m·˙tY+˙X-WX+˙Y<˙t+˙t+˙n+m·˙t+˙n+m·˙t
139 115 133 135 137 138 syl13anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙Y˙t+˙t+˙n+m·˙t+˙invgWX+˙Yt+˙t+˙n+m·˙t+˙invgWX+˙Y<˙t+˙t+˙n+m·˙t+˙n+m·˙tY+˙X-WX+˙Y<˙t+˙t+˙n+m·˙t+˙n+m·˙t
140 95 131 139 mp2and φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙Y<˙t+˙t+˙n+m·˙t+˙n+m·˙t
141 1 8 grpcl WGrptBtBt+˙tB
142 25 29 29 141 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙tB
143 1 8 grpass WGrpt+˙tBn+m·˙tBn+m·˙tBt+˙t+˙n+m·˙t+˙n+m·˙t=t+˙t+˙n+m·˙t+˙n+m·˙t
144 25 142 124 101 143 syl13anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙t+˙n+m·˙t=t+˙t+˙n+m·˙t+˙n+m·˙t
145 60 59 addcld φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m
146 145 negidd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m+n+m=0
147 146 oveq1d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m+n+m·˙t=0·˙t
148 1 5 8 mulgdir WGrpn+mn+mtBn+m+n+m·˙t=n+m·˙t+˙n+m·˙t
149 25 79 99 29 148 syl13anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m+n+m·˙t=n+m·˙t+˙n+m·˙t
150 1 2 5 mulg0 tB0·˙t=0˙
151 29 150 syl φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t0·˙t=0˙
152 147 149 151 3eqtr3d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tn+m·˙t+˙n+m·˙t=0˙
153 152 oveq2d φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙t+˙n+m·˙t=t+˙t+˙0˙
154 1 8 2 grprid WGrpt+˙tBt+˙t+˙0˙=t+˙t
155 25 142 154 syl2anc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙0˙=t+˙t
156 144 153 155 3eqtrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tt+˙t+˙n+m·˙t+˙n+m·˙t=t+˙t
157 140 156 breqtrd φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙Y<˙t+˙t
158 157 3anassrs φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tY+˙X-WX+˙Y<˙t+˙t
159 17 3ad2ant1 φX+˙Y<˙Y+˙XtB0˙<˙tWoGrp
160 7 adantr φX+˙Y<˙Y+˙XWArchi
161 160 3ad2ant1 φX+˙Y<˙Y+˙XtB0˙<˙tWArchi
162 simp3 φX+˙Y<˙Y+˙XtB0˙<˙t0˙<˙t
163 9 adantr φX+˙Y<˙Y+˙Xopp𝑔WoGrp
164 163 3ad2ant1 φX+˙Y<˙Y+˙XtB0˙<˙topp𝑔WoGrp
165 1 2 4 3 5 159 161 28 38 162 164 archirngz φX+˙Y<˙Y+˙XtB0˙<˙tnn·˙t<˙XX˙n+1·˙t
166 1 2 4 3 5 159 161 28 40 162 164 archirngz φX+˙Y<˙Y+˙XtB0˙<˙tmm·˙t<˙YY˙m+1·˙t
167 reeanv nmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙tnn·˙t<˙XX˙n+1·˙tmm·˙t<˙YY˙m+1·˙t
168 165 166 167 sylanbrc φX+˙Y<˙Y+˙XtB0˙<˙tnmn·˙t<˙XX˙n+1·˙tm·˙t<˙YY˙m+1·˙t
169 158 168 r19.29vva φX+˙Y<˙Y+˙XtB0˙<˙tY+˙X-WX+˙Y<˙t+˙t
170 159 45 113 3syl φX+˙Y<˙Y+˙XtB0˙<˙tWToset
171 19 21 20 42 syl3anc φX+˙Y<˙Y+˙XX+˙YB
172 19 23 171 132 syl3anc φX+˙Y<˙Y+˙XY+˙X-WX+˙YB
173 172 3ad2ant1 φX+˙Y<˙Y+˙XtB0˙<˙tY+˙X-WX+˙YB
174 159 18 syl φX+˙Y<˙Y+˙XtB0˙<˙tWGrp
175 174 28 28 141 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tt+˙tB
176 1 3 4 tltnle WTosetY+˙X-WX+˙YBt+˙tBY+˙X-WX+˙Y<˙t+˙t¬t+˙t˙Y+˙X-WX+˙Y
177 170 173 175 176 syl3anc φX+˙Y<˙Y+˙XtB0˙<˙tY+˙X-WX+˙Y<˙t+˙t¬t+˙t˙Y+˙X-WX+˙Y
178 169 177 mpbid φX+˙Y<˙Y+˙XtB0˙<˙t¬t+˙t˙Y+˙X-WX+˙Y
179 178 3expa φX+˙Y<˙Y+˙XtB0˙<˙t¬t+˙t˙Y+˙X-WX+˙Y
180 179 adantrr φX+˙Y<˙Y+˙XtB0˙<˙tt+˙t˙Y+˙X-WX+˙Y¬t+˙t˙Y+˙X-WX+˙Y
181 13 180 pm2.21fal φX+˙Y<˙Y+˙XtB0˙<˙tt+˙t˙Y+˙X-WX+˙Y
182 10 3adant1r φX+˙Y<˙Y+˙XaB0˙<˙abB0˙<˙bb<˙a
183 1 2 56 grpsubid WGrpX+˙YBX+˙Y-WX+˙Y=0˙
184 19 171 183 syl2anc φX+˙Y<˙Y+˙XX+˙Y-WX+˙Y=0˙
185 simpr φX+˙Y<˙Y+˙XX+˙Y<˙Y+˙X
186 1 4 56 ogrpsublt WoGrpX+˙YBY+˙XBX+˙YBX+˙Y<˙Y+˙XX+˙Y-WX+˙Y<˙Y+˙X-WX+˙Y
187 17 171 23 171 185 186 syl131anc φX+˙Y<˙Y+˙XX+˙Y-WX+˙Y<˙Y+˙X-WX+˙Y
188 184 187 eqbrtrrd φX+˙Y<˙Y+˙X0˙<˙Y+˙X-WX+˙Y
189 1 2 3 4 5 17 160 8 163 182 172 188 archiabllem2a φX+˙Y<˙Y+˙XtB0˙<˙tt+˙t˙Y+˙X-WX+˙Y
190 181 189 r19.29a φX+˙Y<˙Y+˙X
191 190 inegd φ¬X+˙Y<˙Y+˙X