Metamath Proof Explorer


Theorem bj-fvimacnv0

Description: Variant of fvimacnv where membership of A in the domain is not needed provided the containing class B does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv . (Contributed by BJ, 7-Jan-2024)

Ref Expression
Assertion bj-fvimacnv0
|- ( ( Fun F /\ -. (/) e. B ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( ( F ` A ) = (/) -> ( ( F ` A ) e. B <-> (/) e. B ) )
2 1 biimpcd
 |-  ( ( F ` A ) e. B -> ( ( F ` A ) = (/) -> (/) e. B ) )
3 2 con3rr3
 |-  ( -. (/) e. B -> ( ( F ` A ) e. B -> -. ( F ` A ) = (/) ) )
4 3 imp
 |-  ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> -. ( F ` A ) = (/) )
5 ndmfv
 |-  ( -. A e. dom F -> ( F ` A ) = (/) )
6 4 5 nsyl2
 |-  ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> A e. dom F )
7 simpr
 |-  ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> ( F ` A ) e. B )
8 fvimacnv
 |-  ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) )
9 8 biimpd
 |-  ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) )
10 9 ex
 |-  ( Fun F -> ( A e. dom F -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) )
11 10 com3l
 |-  ( A e. dom F -> ( ( F ` A ) e. B -> ( Fun F -> A e. ( `' F " B ) ) ) )
12 6 7 11 sylc
 |-  ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> ( Fun F -> A e. ( `' F " B ) ) )
13 12 ex
 |-  ( -. (/) e. B -> ( ( F ` A ) e. B -> ( Fun F -> A e. ( `' F " B ) ) ) )
14 13 com3r
 |-  ( Fun F -> ( -. (/) e. B -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) )
15 14 imp
 |-  ( ( Fun F /\ -. (/) e. B ) -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) )
16 fvimacnvi
 |-  ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F ` A ) e. B )
17 16 ex
 |-  ( Fun F -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) )
18 17 adantr
 |-  ( ( Fun F /\ -. (/) e. B ) -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) )
19 15 18 impbid
 |-  ( ( Fun F /\ -. (/) e. B ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) )