| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( ( F ` A ) = (/) -> ( ( F ` A ) e. B <-> (/) e. B ) ) |
| 2 |
1
|
biimpcd |
|- ( ( F ` A ) e. B -> ( ( F ` A ) = (/) -> (/) e. B ) ) |
| 3 |
2
|
con3rr3 |
|- ( -. (/) e. B -> ( ( F ` A ) e. B -> -. ( F ` A ) = (/) ) ) |
| 4 |
3
|
imp |
|- ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> -. ( F ` A ) = (/) ) |
| 5 |
|
ndmfv |
|- ( -. A e. dom F -> ( F ` A ) = (/) ) |
| 6 |
4 5
|
nsyl2 |
|- ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> A e. dom F ) |
| 7 |
|
simpr |
|- ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> ( F ` A ) e. B ) |
| 8 |
|
fvimacnv |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |
| 9 |
8
|
biimpd |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) |
| 10 |
9
|
ex |
|- ( Fun F -> ( A e. dom F -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) ) |
| 11 |
10
|
com3l |
|- ( A e. dom F -> ( ( F ` A ) e. B -> ( Fun F -> A e. ( `' F " B ) ) ) ) |
| 12 |
6 7 11
|
sylc |
|- ( ( -. (/) e. B /\ ( F ` A ) e. B ) -> ( Fun F -> A e. ( `' F " B ) ) ) |
| 13 |
12
|
ex |
|- ( -. (/) e. B -> ( ( F ` A ) e. B -> ( Fun F -> A e. ( `' F " B ) ) ) ) |
| 14 |
13
|
com3r |
|- ( Fun F -> ( -. (/) e. B -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) ) |
| 15 |
14
|
imp |
|- ( ( Fun F /\ -. (/) e. B ) -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) |
| 16 |
|
fvimacnvi |
|- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F ` A ) e. B ) |
| 17 |
16
|
ex |
|- ( Fun F -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) ) |
| 18 |
17
|
adantr |
|- ( ( Fun F /\ -. (/) e. B ) -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) ) |
| 19 |
15 18
|
impbid |
|- ( ( Fun F /\ -. (/) e. B ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |