Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝐴 ) = ∅ → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ ∅ ∈ 𝐵 ) ) |
2 |
1
|
biimpcd |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) = ∅ → ∅ ∈ 𝐵 ) ) |
3 |
2
|
con3rr3 |
⊢ ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
4 |
3
|
imp |
⊢ ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) → ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) |
5 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
6 |
4 5
|
nsyl2 |
⊢ ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
7 |
|
simpr |
⊢ ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
8 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
10 |
9
|
ex |
⊢ ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) ) |
11 |
10
|
com3l |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( Fun 𝐹 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) ) |
12 |
6 7 11
|
sylc |
⊢ ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) → ( Fun 𝐹 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
13 |
12
|
ex |
⊢ ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( Fun 𝐹 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) ) |
14 |
13
|
com3r |
⊢ ( Fun 𝐹 → ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) ) |
15 |
14
|
imp |
⊢ ( ( Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
16 |
|
fvimacnvi |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
17 |
16
|
ex |
⊢ ( Fun 𝐹 → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
18 |
17
|
adantr |
⊢ ( ( Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
19 |
15 18
|
impbid |
⊢ ( ( Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |