Metamath Proof Explorer


Theorem bj-fvimacnv0

Description: Variant of fvimacnv where membership of A in the domain is not needed provided the containing class B does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv . (Contributed by BJ, 7-Jan-2024)

Ref Expression
Assertion bj-fvimacnv0 ( ( Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵 ) → ( ( 𝐹𝐴 ) ∈ 𝐵𝐴 ∈ ( 𝐹𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( ( 𝐹𝐴 ) = ∅ → ( ( 𝐹𝐴 ) ∈ 𝐵 ↔ ∅ ∈ 𝐵 ) )
2 1 biimpcd ( ( 𝐹𝐴 ) ∈ 𝐵 → ( ( 𝐹𝐴 ) = ∅ → ∅ ∈ 𝐵 ) )
3 2 con3rr3 ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹𝐴 ) ∈ 𝐵 → ¬ ( 𝐹𝐴 ) = ∅ ) )
4 3 imp ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝐵 ) → ¬ ( 𝐹𝐴 ) = ∅ )
5 ndmfv ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ )
6 4 5 nsyl2 ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝐵 ) → 𝐴 ∈ dom 𝐹 )
7 simpr ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝐵 ) → ( 𝐹𝐴 ) ∈ 𝐵 )
8 fvimacnv ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹𝐴 ) ∈ 𝐵𝐴 ∈ ( 𝐹𝐵 ) ) )
9 8 biimpd ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹𝐴 ) ∈ 𝐵𝐴 ∈ ( 𝐹𝐵 ) ) )
10 9 ex ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹𝐴 ) ∈ 𝐵𝐴 ∈ ( 𝐹𝐵 ) ) ) )
11 10 com3l ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹𝐴 ) ∈ 𝐵 → ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) ) )
12 6 7 11 sylc ( ( ¬ ∅ ∈ 𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝐵 ) → ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) )
13 12 ex ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹𝐴 ) ∈ 𝐵 → ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) ) )
14 13 com3r ( Fun 𝐹 → ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹𝐴 ) ∈ 𝐵𝐴 ∈ ( 𝐹𝐵 ) ) ) )
15 14 imp ( ( Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵 ) → ( ( 𝐹𝐴 ) ∈ 𝐵𝐴 ∈ ( 𝐹𝐵 ) ) )
16 fvimacnvi ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ( 𝐹𝐴 ) ∈ 𝐵 )
17 16 ex ( Fun 𝐹 → ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐹𝐴 ) ∈ 𝐵 ) )
18 17 adantr ( ( Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐹𝐴 ) ∈ 𝐵 ) )
19 15 18 impbid ( ( Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵 ) → ( ( 𝐹𝐴 ) ∈ 𝐵𝐴 ∈ ( 𝐹𝐵 ) ) )