| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-brresdm |  |-  ( A ( _I |` C ) B -> A e. C ) | 
						
							| 2 |  | relres |  |-  Rel ( _I |` C ) | 
						
							| 3 | 2 | brrelex2i |  |-  ( A ( _I |` C ) B -> B e. _V ) | 
						
							| 4 | 1 3 | jca |  |-  ( A ( _I |` C ) B -> ( A e. C /\ B e. _V ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( A i^i B ) e. C /\ A ( _I |` C ) B ) -> ( A e. C /\ B e. _V ) ) | 
						
							| 6 |  | eqimss |  |-  ( A = B -> A C_ B ) | 
						
							| 7 |  | dfss2 |  |-  ( A C_ B <-> ( A i^i B ) = A ) | 
						
							| 8 | 6 7 | sylib |  |-  ( A = B -> ( A i^i B ) = A ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( A i^i B ) e. C /\ A = B ) -> ( A i^i B ) = A ) | 
						
							| 10 |  | simpl |  |-  ( ( ( A i^i B ) e. C /\ A = B ) -> ( A i^i B ) e. C ) | 
						
							| 11 | 9 10 | eqeltrrd |  |-  ( ( ( A i^i B ) e. C /\ A = B ) -> A e. C ) | 
						
							| 12 |  | eqimss2 |  |-  ( A = B -> B C_ A ) | 
						
							| 13 |  | sseqin2 |  |-  ( B C_ A <-> ( A i^i B ) = B ) | 
						
							| 14 | 12 13 | sylib |  |-  ( A = B -> ( A i^i B ) = B ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( A i^i B ) e. C /\ A = B ) -> ( A i^i B ) = B ) | 
						
							| 16 | 15 10 | eqeltrrd |  |-  ( ( ( A i^i B ) e. C /\ A = B ) -> B e. C ) | 
						
							| 17 | 16 | elexd |  |-  ( ( ( A i^i B ) e. C /\ A = B ) -> B e. _V ) | 
						
							| 18 | 11 17 | jca |  |-  ( ( ( A i^i B ) e. C /\ A = B ) -> ( A e. C /\ B e. _V ) ) | 
						
							| 19 |  | brres |  |-  ( B e. _V -> ( A ( _I |` C ) B <-> ( A e. C /\ A _I B ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( A e. C /\ B e. _V ) -> ( A ( _I |` C ) B <-> ( A e. C /\ A _I B ) ) ) | 
						
							| 21 |  | eqeq12 |  |-  ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) ) | 
						
							| 22 |  | df-id |  |-  _I = { <. x , y >. | x = y } | 
						
							| 23 | 21 22 | brabga |  |-  ( ( A e. C /\ B e. _V ) -> ( A _I B <-> A = B ) ) | 
						
							| 24 | 23 | anbi2d |  |-  ( ( A e. C /\ B e. _V ) -> ( ( A e. C /\ A _I B ) <-> ( A e. C /\ A = B ) ) ) | 
						
							| 25 |  | simp3 |  |-  ( ( ( A e. C /\ B e. _V ) /\ A e. C /\ A = B ) -> A = B ) | 
						
							| 26 | 25 | 3expib |  |-  ( ( A e. C /\ B e. _V ) -> ( ( A e. C /\ A = B ) -> A = B ) ) | 
						
							| 27 |  | 3simpb |  |-  ( ( A e. C /\ B e. _V /\ A = B ) -> ( A e. C /\ A = B ) ) | 
						
							| 28 | 27 | 3expia |  |-  ( ( A e. C /\ B e. _V ) -> ( A = B -> ( A e. C /\ A = B ) ) ) | 
						
							| 29 | 26 28 | impbid |  |-  ( ( A e. C /\ B e. _V ) -> ( ( A e. C /\ A = B ) <-> A = B ) ) | 
						
							| 30 | 20 24 29 | 3bitrd |  |-  ( ( A e. C /\ B e. _V ) -> ( A ( _I |` C ) B <-> A = B ) ) | 
						
							| 31 | 5 18 30 | pm5.21nd |  |-  ( ( A i^i B ) e. C -> ( A ( _I |` C ) B <-> A = B ) ) |