| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-brresdm |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → 𝐴 ∈ 𝐶 ) |
| 2 |
|
relres |
⊢ Rel ( I ↾ 𝐶 ) |
| 3 |
2
|
brrelex2i |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → 𝐵 ∈ V ) |
| 4 |
1 3
|
jca |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 ( I ↾ 𝐶 ) 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
| 6 |
|
eqimss |
⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) |
| 7 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 10 |
|
simpl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |
| 11 |
9 10
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐶 ) |
| 12 |
|
eqimss2 |
⊢ ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐴 ) |
| 13 |
|
sseqin2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 14 |
12 13
|
sylib |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 16 |
15 10
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝐶 ) |
| 17 |
16
|
elexd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) |
| 18 |
11 17
|
jca |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
| 19 |
|
brres |
⊢ ( 𝐵 ∈ V → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ) ) |
| 21 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
| 22 |
|
df-id |
⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } |
| 23 |
21 22
|
brabga |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 24 |
23
|
anbi2d |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
| 25 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 26 |
25
|
3expib |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 27 |
|
3simpb |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) |
| 28 |
27
|
3expia |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
| 29 |
26 28
|
impbid |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 30 |
20 24 29
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 31 |
5 18 30
|
pm5.21nd |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ 𝐴 = 𝐵 ) ) |