Step |
Hyp |
Ref |
Expression |
1 |
|
bj-brresdm |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → 𝐴 ∈ 𝐶 ) |
2 |
|
relres |
⊢ Rel ( I ↾ 𝐶 ) |
3 |
2
|
brrelex2i |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → 𝐵 ∈ V ) |
4 |
1 3
|
jca |
⊢ ( 𝐴 ( I ↾ 𝐶 ) 𝐵 → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 ( I ↾ 𝐶 ) 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
6 |
|
eqimss |
⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) |
7 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
8 |
6 7
|
sylib |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
10 |
|
simpl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |
11 |
9 10
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐶 ) |
12 |
|
eqimss2 |
⊢ ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐴 ) |
13 |
|
sseqin2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
14 |
12 13
|
sylib |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
16 |
15 10
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝐶 ) |
17 |
16
|
elexd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) |
18 |
11 17
|
jca |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
19 |
|
brres |
⊢ ( 𝐵 ∈ V → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ) ) |
21 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
22 |
|
df-id |
⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } |
23 |
21 22
|
brabga |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |
24 |
23
|
anbi2d |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
25 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
26 |
25
|
3expib |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) ) |
27 |
|
3simpb |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) |
28 |
27
|
3expia |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
29 |
26 28
|
impbid |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
30 |
20 24 29
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ 𝐴 = 𝐵 ) ) |
31 |
5 18 30
|
pm5.21nd |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 ( I ↾ 𝐶 ) 𝐵 ↔ 𝐴 = 𝐵 ) ) |