| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-brresdm | ⊢ ( 𝐴 (  I   ↾  𝐶 ) 𝐵  →  𝐴  ∈  𝐶 ) | 
						
							| 2 |  | relres | ⊢ Rel  (  I   ↾  𝐶 ) | 
						
							| 3 | 2 | brrelex2i | ⊢ ( 𝐴 (  I   ↾  𝐶 ) 𝐵  →  𝐵  ∈  V ) | 
						
							| 4 | 1 3 | jca | ⊢ ( 𝐴 (  I   ↾  𝐶 ) 𝐵  →  ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴 (  I   ↾  𝐶 ) 𝐵 )  →  ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V ) ) | 
						
							| 6 |  | eqimss | ⊢ ( 𝐴  =  𝐵  →  𝐴  ⊆  𝐵 ) | 
						
							| 7 |  | dfss2 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 10 |  | simpl | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) | 
						
							| 11 | 9 10 | eqeltrrd | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  𝐶 ) | 
						
							| 12 |  | eqimss2 | ⊢ ( 𝐴  =  𝐵  →  𝐵  ⊆  𝐴 ) | 
						
							| 13 |  | sseqin2 | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐴  ∩  𝐵 )  =  𝐵 ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∩  𝐵 )  =  𝐵 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  𝐵 ) | 
						
							| 16 | 15 10 | eqeltrrd | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  𝐶 ) | 
						
							| 17 | 16 | elexd | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 18 | 11 17 | jca | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V ) ) | 
						
							| 19 |  | brres | ⊢ ( 𝐵  ∈  V  →  ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  I  𝐵 ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  →  ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  I  𝐵 ) ) ) | 
						
							| 21 |  | eqeq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  =  𝑦  ↔  𝐴  =  𝐵 ) ) | 
						
							| 22 |  | df-id | ⊢  I   =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  =  𝑦 } | 
						
							| 23 | 21 22 | brabga | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  →  ( 𝐴  I  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 24 | 23 | anbi2d | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  →  ( ( 𝐴  ∈  𝐶  ∧  𝐴  I  𝐵 )  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 ) ) ) | 
						
							| 25 |  | simp3 | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  ∧  𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 26 | 25 | 3expib | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  →  ( ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 27 |  | 3simpb | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 ) ) | 
						
							| 28 | 27 | 3expia | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  →  ( 𝐴  =  𝐵  →  ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 ) ) ) | 
						
							| 29 | 26 28 | impbid | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  →  ( ( 𝐴  ∈  𝐶  ∧  𝐴  =  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 30 | 20 24 29 | 3bitrd | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  V )  →  ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 31 | 5 18 30 | pm5.21nd | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  →  ( 𝐴 (  I   ↾  𝐶 ) 𝐵  ↔  𝐴  =  𝐵 ) ) |