Step |
Hyp |
Ref |
Expression |
1 |
|
bnj121.1 |
|- ( ze <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
2 |
|
bnj121.2 |
|- ( ze' <-> [. 1o / n ]. ze ) |
3 |
|
bnj121.3 |
|- ( ph' <-> [. 1o / n ]. ph ) |
4 |
|
bnj121.4 |
|- ( ps' <-> [. 1o / n ]. ps ) |
5 |
1
|
sbcbii |
|- ( [. 1o / n ]. ze <-> [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
6 |
|
bnj105 |
|- 1o e. _V |
7 |
6
|
bnj90 |
|- ( [. 1o / n ]. f Fn n <-> f Fn 1o ) |
8 |
7
|
bicomi |
|- ( f Fn 1o <-> [. 1o / n ]. f Fn n ) |
9 |
8 3 4
|
3anbi123i |
|- ( ( f Fn 1o /\ ph' /\ ps' ) <-> ( [. 1o / n ]. f Fn n /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) ) |
10 |
|
sbc3an |
|- ( [. 1o / n ]. ( f Fn n /\ ph /\ ps ) <-> ( [. 1o / n ]. f Fn n /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) ) |
11 |
9 10
|
bitr4i |
|- ( ( f Fn 1o /\ ph' /\ ps' ) <-> [. 1o / n ]. ( f Fn n /\ ph /\ ps ) ) |
12 |
11
|
imbi2i |
|- ( ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) <-> ( ( R _FrSe A /\ x e. A ) -> [. 1o / n ]. ( f Fn n /\ ph /\ ps ) ) ) |
13 |
|
nfv |
|- F/ n ( R _FrSe A /\ x e. A ) |
14 |
13
|
sbc19.21g |
|- ( 1o e. _V -> ( [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> [. 1o / n ]. ( f Fn n /\ ph /\ ps ) ) ) ) |
15 |
6 14
|
ax-mp |
|- ( [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> [. 1o / n ]. ( f Fn n /\ ph /\ ps ) ) ) |
16 |
12 15
|
bitr4i |
|- ( ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) <-> [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
17 |
5 2 16
|
3bitr4i |
|- ( ze' <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) ) |