| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c1lip3.a |
|- ( ph -> A e. RR ) |
| 2 |
|
c1lip3.b |
|- ( ph -> B e. RR ) |
| 3 |
|
c1lip3.f |
|- ( ph -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) |
| 4 |
|
c1lip3.rn |
|- ( ph -> ( F " RR ) C_ RR ) |
| 5 |
|
c1lip3.dm |
|- ( ph -> ( A [,] B ) C_ dom F ) |
| 6 |
|
df-ima |
|- ( F " RR ) = ran ( F |` RR ) |
| 7 |
6 4
|
eqsstrrid |
|- ( ph -> ran ( F |` RR ) C_ RR ) |
| 8 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 10 |
9 5
|
ssind |
|- ( ph -> ( A [,] B ) C_ ( RR i^i dom F ) ) |
| 11 |
|
dmres |
|- dom ( F |` RR ) = ( RR i^i dom F ) |
| 12 |
10 11
|
sseqtrrdi |
|- ( ph -> ( A [,] B ) C_ dom ( F |` RR ) ) |
| 13 |
1 2 3 7 12
|
c1lip2 |
|- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| 14 |
9
|
sseld |
|- ( ph -> ( x e. ( A [,] B ) -> x e. RR ) ) |
| 15 |
9
|
sseld |
|- ( ph -> ( y e. ( A [,] B ) -> y e. RR ) ) |
| 16 |
14 15
|
anim12d |
|- ( ph -> ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x e. RR /\ y e. RR ) ) ) |
| 17 |
16
|
imp |
|- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x e. RR /\ y e. RR ) ) |
| 18 |
|
fvres |
|- ( y e. RR -> ( ( F |` RR ) ` y ) = ( F ` y ) ) |
| 19 |
|
fvres |
|- ( x e. RR -> ( ( F |` RR ) ` x ) = ( F ` x ) ) |
| 20 |
18 19
|
oveqan12rd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) = ( ( F ` y ) - ( F ` x ) ) ) |
| 21 |
20
|
fveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) = ( abs ` ( ( F ` y ) - ( F ` x ) ) ) ) |
| 22 |
21
|
breq1d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 23 |
22
|
biimpd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 24 |
17 23
|
syl |
|- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 25 |
24
|
ralimdvva |
|- ( ph -> ( A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 26 |
25
|
reximdv |
|- ( ph -> ( E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 27 |
13 26
|
mpd |
|- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |