Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | c1lip3.a | |
|
c1lip3.b | |
||
c1lip3.f | |
||
c1lip3.rn | |
||
c1lip3.dm | |
||
Assertion | c1lip3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1lip3.a | |
|
2 | c1lip3.b | |
|
3 | c1lip3.f | |
|
4 | c1lip3.rn | |
|
5 | c1lip3.dm | |
|
6 | df-ima | |
|
7 | 6 4 | eqsstrrid | |
8 | iccssre | |
|
9 | 1 2 8 | syl2anc | |
10 | 9 5 | ssind | |
11 | dmres | |
|
12 | 10 11 | sseqtrrdi | |
13 | 1 2 3 7 12 | c1lip2 | |
14 | 9 | sseld | |
15 | 9 | sseld | |
16 | 14 15 | anim12d | |
17 | 16 | imp | |
18 | fvres | |
|
19 | fvres | |
|
20 | 18 19 | oveqan12rd | |
21 | 20 | fveq2d | |
22 | 21 | breq1d | |
23 | 22 | biimpd | |
24 | 17 23 | syl | |
25 | 24 | ralimdvva | |
26 | 25 | reximdv | |
27 | 13 26 | mpd | |