Metamath Proof Explorer


Theorem c1lip3

Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses c1lip3.a φA
c1lip3.b φB
c1lip3.f φFCn1
c1lip3.rn φF
c1lip3.dm φABdomF
Assertion c1lip3 φkxAByABFyFxkyx

Proof

Step Hyp Ref Expression
1 c1lip3.a φA
2 c1lip3.b φB
3 c1lip3.f φFCn1
4 c1lip3.rn φF
5 c1lip3.dm φABdomF
6 df-ima F=ranF
7 6 4 eqsstrrid φranF
8 iccssre ABAB
9 1 2 8 syl2anc φAB
10 9 5 ssind φABdomF
11 dmres domF=domF
12 10 11 sseqtrrdi φABdomF
13 1 2 3 7 12 c1lip2 φkxAByABFyFxkyx
14 9 sseld φxABx
15 9 sseld φyABy
16 14 15 anim12d φxAByABxy
17 16 imp φxAByABxy
18 fvres yFy=Fy
19 fvres xFx=Fx
20 18 19 oveqan12rd xyFyFx=FyFx
21 20 fveq2d xyFyFx=FyFx
22 21 breq1d xyFyFxkyxFyFxkyx
23 22 biimpd xyFyFxkyxFyFxkyx
24 17 23 syl φxAByABFyFxkyxFyFxkyx
25 24 ralimdvva φxAByABFyFxkyxxAByABFyFxkyx
26 25 reximdv φkxAByABFyFxkyxkxAByABFyFxkyx
27 13 26 mpd φkxAByABFyFxkyx