| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemd4.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemd4.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemd4.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | cdlemd4.h |  |-  H = ( LHyp ` K ) | 
						
							| 5 |  | cdlemd4.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 6 |  | simp3r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` P ) = P ) | 
						
							| 7 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> F e. T ) | 
						
							| 9 |  | simp2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 11 | 10 1 3 4 5 | ltrnideq |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F = ( _I |` ( Base ` K ) ) <-> ( F ` P ) = P ) ) | 
						
							| 12 | 7 8 9 11 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F = ( _I |` ( Base ` K ) ) <-> ( F ` P ) = P ) ) | 
						
							| 13 | 6 12 | mpbird |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> F = ( _I |` ( Base ` K ) ) ) | 
						
							| 14 | 13 | fveq1d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` R ) = ( ( _I |` ( Base ` K ) ) ` R ) ) | 
						
							| 15 |  | simp3l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` P ) = ( G ` P ) ) | 
						
							| 16 | 15 6 | eqtr3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( G ` P ) = P ) | 
						
							| 17 |  | simp12r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> G e. T ) | 
						
							| 18 | 10 1 3 4 5 | ltrnideq |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( G = ( _I |` ( Base ` K ) ) <-> ( G ` P ) = P ) ) | 
						
							| 19 | 7 17 9 18 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( G = ( _I |` ( Base ` K ) ) <-> ( G ` P ) = P ) ) | 
						
							| 20 | 16 19 | mpbird |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> G = ( _I |` ( Base ` K ) ) ) | 
						
							| 21 | 20 | fveq1d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( G ` R ) = ( ( _I |` ( Base ` K ) ) ` R ) ) | 
						
							| 22 | 14 21 | eqtr4d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` R ) = ( G ` R ) ) |