Metamath Proof Explorer


Theorem cdlemd8

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses cdlemd4.l ˙=K
cdlemd4.j ˙=joinK
cdlemd4.a A=AtomsK
cdlemd4.h H=LHypK
cdlemd4.t T=LTrnKW
Assertion cdlemd8 KHLWHFTGTRAPA¬P˙WFP=GPFP=PFR=GR

Proof

Step Hyp Ref Expression
1 cdlemd4.l ˙=K
2 cdlemd4.j ˙=joinK
3 cdlemd4.a A=AtomsK
4 cdlemd4.h H=LHypK
5 cdlemd4.t T=LTrnKW
6 simp3r KHLWHFTGTRAPA¬P˙WFP=GPFP=PFP=P
7 simp11 KHLWHFTGTRAPA¬P˙WFP=GPFP=PKHLWH
8 simp12l KHLWHFTGTRAPA¬P˙WFP=GPFP=PFT
9 simp2 KHLWHFTGTRAPA¬P˙WFP=GPFP=PPA¬P˙W
10 eqid BaseK=BaseK
11 10 1 3 4 5 ltrnideq KHLWHFTPA¬P˙WF=IBaseKFP=P
12 7 8 9 11 syl3anc KHLWHFTGTRAPA¬P˙WFP=GPFP=PF=IBaseKFP=P
13 6 12 mpbird KHLWHFTGTRAPA¬P˙WFP=GPFP=PF=IBaseK
14 13 fveq1d KHLWHFTGTRAPA¬P˙WFP=GPFP=PFR=IBaseKR
15 simp3l KHLWHFTGTRAPA¬P˙WFP=GPFP=PFP=GP
16 15 6 eqtr3d KHLWHFTGTRAPA¬P˙WFP=GPFP=PGP=P
17 simp12r KHLWHFTGTRAPA¬P˙WFP=GPFP=PGT
18 10 1 3 4 5 ltrnideq KHLWHGTPA¬P˙WG=IBaseKGP=P
19 7 17 9 18 syl3anc KHLWHFTGTRAPA¬P˙WFP=GPFP=PG=IBaseKGP=P
20 16 19 mpbird KHLWHFTGTRAPA¬P˙WFP=GPFP=PG=IBaseK
21 20 fveq1d KHLWHFTGTRAPA¬P˙WFP=GPFP=PGR=IBaseKR
22 14 21 eqtr4d KHLWHFTGTRAPA¬P˙WFP=GPFP=PFR=GR