| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemd4.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemd4.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemd4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | cdlemd4.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 |  | cdlemd4.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | simp3r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) | 
						
							| 7 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 9 |  | simp2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 11 | 10 1 3 4 5 | ltrnideq | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝐹  =  (  I   ↾  ( Base ‘ 𝐾 ) )  ↔  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) ) | 
						
							| 12 | 7 8 9 11 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐹  =  (  I   ↾  ( Base ‘ 𝐾 ) )  ↔  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) ) | 
						
							| 13 | 6 12 | mpbird | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  𝐹  =  (  I   ↾  ( Base ‘ 𝐾 ) ) ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( (  I   ↾  ( Base ‘ 𝐾 ) ) ‘ 𝑅 ) ) | 
						
							| 15 |  | simp3l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 ) ) | 
						
							| 16 | 15 6 | eqtr3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐺 ‘ 𝑃 )  =  𝑃 ) | 
						
							| 17 |  | simp12r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 18 | 10 1 3 4 5 | ltrnideq | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝐺  =  (  I   ↾  ( Base ‘ 𝐾 ) )  ↔  ( 𝐺 ‘ 𝑃 )  =  𝑃 ) ) | 
						
							| 19 | 7 17 9 18 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐺  =  (  I   ↾  ( Base ‘ 𝐾 ) )  ↔  ( 𝐺 ‘ 𝑃 )  =  𝑃 ) ) | 
						
							| 20 | 16 19 | mpbird | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  𝐺  =  (  I   ↾  ( Base ‘ 𝐾 ) ) ) | 
						
							| 21 | 20 | fveq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐺 ‘ 𝑅 )  =  ( (  I   ↾  ( Base ‘ 𝐾 ) ) ‘ 𝑅 ) ) | 
						
							| 22 | 14 21 | eqtr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) ) |