Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk1.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk1.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk1.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk1.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk1.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk1.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk1.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk1.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
|- O = ( S ` D ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk15 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) ) |
12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. HL ) |
13 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
14 |
12 13
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. AtLat ) |
15 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> N e. T ) |
17 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> P e. A ) |
18 |
2 5 6 7
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A ) |
19 |
15 16 17 18
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) e. A ) |
20 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk16 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) .<_ W ) ) |
21 |
20
|
simpld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) e. A ) |
22 |
2 5
|
atcmp |
|- ( ( K e. AtLat /\ ( N ` P ) e. A /\ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) e. A ) -> ( ( N ` P ) .<_ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) <-> ( N ` P ) = ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) ) ) |
23 |
14 19 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( N ` P ) .<_ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) <-> ( N ` P ) = ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) ) ) |
24 |
11 23
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) = ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) ) |