Metamath Proof Explorer


Theorem cdlemk15

Description: Part of proof of Lemma K of Crawley p. 118. Line 21 on p. 119. O , D are k_1, f_1. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b
|- B = ( Base ` K )
cdlemk1.l
|- .<_ = ( le ` K )
cdlemk1.j
|- .\/ = ( join ` K )
cdlemk1.m
|- ./\ = ( meet ` K )
cdlemk1.a
|- A = ( Atoms ` K )
cdlemk1.h
|- H = ( LHyp ` K )
cdlemk1.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk1.r
|- R = ( ( trL ` K ) ` W )
cdlemk1.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk1.o
|- O = ( S ` D )
Assertion cdlemk15
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b
 |-  B = ( Base ` K )
2 cdlemk1.l
 |-  .<_ = ( le ` K )
3 cdlemk1.j
 |-  .\/ = ( join ` K )
4 cdlemk1.m
 |-  ./\ = ( meet ` K )
5 cdlemk1.a
 |-  A = ( Atoms ` K )
6 cdlemk1.h
 |-  H = ( LHyp ` K )
7 cdlemk1.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk1.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk1.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk1.o
 |-  O = ( S ` D )
11 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. HL )
12 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> P e. A )
13 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) )
14 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> N e. T )
15 2 5 6 7 ltrnat
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A )
16 13 14 12 15 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) e. A )
17 2 3 5 hlatlej2
 |-  ( ( K e. HL /\ P e. A /\ ( N ` P ) e. A ) -> ( N ` P ) .<_ ( P .\/ ( N ` P ) ) )
18 11 12 16 17 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( P .\/ ( N ` P ) ) )
19 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` F ) = ( R ` N ) )
20 19 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( R ` N ) ) )
21 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P e. A /\ -. P .<_ W ) )
22 2 3 5 6 7 8 trljat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) )
23 13 14 21 22 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) )
24 20 23 eqtr2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( N ` P ) ) = ( P .\/ ( R ` F ) ) )
25 18 24 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( P .\/ ( R ` F ) ) )
26 1 2 3 4 5 6 7 8 9 10 cdlemk14
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) )
27 11 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. Lat )
28 1 5 atbase
 |-  ( ( N ` P ) e. A -> ( N ` P ) e. B )
29 16 28 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) e. B )
30 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> F e. T )
31 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> F =/= ( _I |` B ) )
32 1 5 6 7 8 trlnidat
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( R ` F ) e. A )
33 13 30 31 32 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` F ) e. A )
34 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ ( R ` F ) e. A ) -> ( P .\/ ( R ` F ) ) e. B )
35 11 12 33 34 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` F ) ) e. B )
36 10 fveq1i
 |-  ( O ` P ) = ( ( S ` D ) ` P )
37 1 2 3 5 6 7 8 4 9 cdlemksat
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( S ` D ) ` P ) e. A )
38 36 37 eqeltrid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) e. A )
39 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> D e. T )
40 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` D ) =/= ( R ` F ) )
41 40 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` F ) =/= ( R ` D ) )
42 5 6 7 8 trlcocnvat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T ) /\ ( R ` F ) =/= ( R ` D ) ) -> ( R ` ( F o. `' D ) ) e. A )
43 13 30 39 41 42 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( F o. `' D ) ) e. A )
44 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ ( O ` P ) e. A /\ ( R ` ( F o. `' D ) ) e. A ) -> ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) e. B )
45 11 38 43 44 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) e. B )
46 1 2 4 latlem12
 |-  ( ( K e. Lat /\ ( ( N ` P ) e. B /\ ( P .\/ ( R ` F ) ) e. B /\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) e. B ) ) -> ( ( ( N ` P ) .<_ ( P .\/ ( R ` F ) ) /\ ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) <-> ( N ` P ) .<_ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) ) )
47 27 29 35 45 46 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( ( N ` P ) .<_ ( P .\/ ( R ` F ) ) /\ ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) <-> ( N ` P ) .<_ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) ) )
48 25 26 47 mpbi2and
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( P .\/ ( R ` F ) ) ./\ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) )