Metamath Proof Explorer


Theorem cdlemk14

Description: Part of proof of Lemma K of Crawley p. 118. Line 19 on p. 119. O , D are k_1, f_1. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b
|- B = ( Base ` K )
cdlemk1.l
|- .<_ = ( le ` K )
cdlemk1.j
|- .\/ = ( join ` K )
cdlemk1.m
|- ./\ = ( meet ` K )
cdlemk1.a
|- A = ( Atoms ` K )
cdlemk1.h
|- H = ( LHyp ` K )
cdlemk1.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk1.r
|- R = ( ( trL ` K ) ` W )
cdlemk1.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk1.o
|- O = ( S ` D )
Assertion cdlemk14
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b
 |-  B = ( Base ` K )
2 cdlemk1.l
 |-  .<_ = ( le ` K )
3 cdlemk1.j
 |-  .\/ = ( join ` K )
4 cdlemk1.m
 |-  ./\ = ( meet ` K )
5 cdlemk1.a
 |-  A = ( Atoms ` K )
6 cdlemk1.h
 |-  H = ( LHyp ` K )
7 cdlemk1.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk1.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk1.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk1.o
 |-  O = ( S ` D )
11 1 2 3 4 5 6 7 8 9 10 cdlemk13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) = ( ( P .\/ ( R ` D ) ) ./\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) )
12 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. HL )
13 12 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. Lat )
14 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> P e. A )
15 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) )
16 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> D e. T )
17 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> D =/= ( _I |` B ) )
18 1 5 6 7 8 trlnidat
 |-  ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ D =/= ( _I |` B ) ) -> ( R ` D ) e. A )
19 15 16 17 18 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` D ) e. A )
20 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ ( R ` D ) e. A ) -> ( P .\/ ( R ` D ) ) e. B )
21 12 14 19 20 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` D ) ) e. B )
22 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> N e. T )
23 2 5 6 7 ltrnat
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A )
24 15 22 14 23 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) e. A )
25 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> F e. T )
26 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` D ) =/= ( R ` F ) )
27 5 6 7 8 trlcocnvat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ F e. T ) /\ ( R ` D ) =/= ( R ` F ) ) -> ( R ` ( D o. `' F ) ) e. A )
28 15 16 25 26 27 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) e. A )
29 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ ( N ` P ) e. A /\ ( R ` ( D o. `' F ) ) e. A ) -> ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) e. B )
30 12 24 28 29 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) e. B )
31 1 2 4 latmle2
 |-  ( ( K e. Lat /\ ( P .\/ ( R ` D ) ) e. B /\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) e. B ) -> ( ( P .\/ ( R ` D ) ) ./\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) )
32 13 21 30 31 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( P .\/ ( R ` D ) ) ./\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) )
33 11 32 eqbrtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) )
34 10 fveq1i
 |-  ( O ` P ) = ( ( S ` D ) ` P )
35 1 2 3 5 6 7 8 4 9 cdlemksat
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( S ` D ) ` P ) e. A )
36 34 35 eqeltrid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) e. A )
37 6 7 ltrncnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T )
38 15 25 37 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> `' F e. T )
39 6 7 ltrnco
 |-  ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ `' F e. T ) -> ( D o. `' F ) e. T )
40 15 16 38 39 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( D o. `' F ) e. T )
41 2 6 7 8 trlle
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( D o. `' F ) e. T ) -> ( R ` ( D o. `' F ) ) .<_ W )
42 15 40 41 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) .<_ W )
43 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) e. A /\ -. ( O ` P ) .<_ W ) )
44 43 simprd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> -. ( O ` P ) .<_ W )
45 nbrne2
 |-  ( ( ( R ` ( D o. `' F ) ) .<_ W /\ -. ( O ` P ) .<_ W ) -> ( R ` ( D o. `' F ) ) =/= ( O ` P ) )
46 42 44 45 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) =/= ( O ` P ) )
47 46 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) =/= ( R ` ( D o. `' F ) ) )
48 2 3 5 hlatexch2
 |-  ( ( K e. HL /\ ( ( O ` P ) e. A /\ ( N ` P ) e. A /\ ( R ` ( D o. `' F ) ) e. A ) /\ ( O ` P ) =/= ( R ` ( D o. `' F ) ) ) -> ( ( O ` P ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) )
49 12 36 24 28 47 48 syl131anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) )
50 33 49 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) )
51 6 7 8 trlcocnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ F e. T ) -> ( R ` ( D o. `' F ) ) = ( R ` ( F o. `' D ) ) )
52 15 16 25 51 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) = ( R ` ( F o. `' D ) ) )
53 52 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) = ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) )
54 50 53 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) )