Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk1.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk1.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk1.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk1.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk1.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk1.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk1.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk1.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
|- O = ( S ` D ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) = ( ( P .\/ ( R ` D ) ) ./\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) ) |
12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. HL ) |
13 |
12
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. Lat ) |
14 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> P e. A ) |
15 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> D e. T ) |
17 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> D =/= ( _I |` B ) ) |
18 |
1 5 6 7 8
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ D =/= ( _I |` B ) ) -> ( R ` D ) e. A ) |
19 |
15 16 17 18
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` D ) e. A ) |
20 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( R ` D ) e. A ) -> ( P .\/ ( R ` D ) ) e. B ) |
21 |
12 14 19 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` D ) ) e. B ) |
22 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> N e. T ) |
23 |
2 5 6 7
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A ) |
24 |
15 22 14 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) e. A ) |
25 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> F e. T ) |
26 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` D ) =/= ( R ` F ) ) |
27 |
5 6 7 8
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ F e. T ) /\ ( R ` D ) =/= ( R ` F ) ) -> ( R ` ( D o. `' F ) ) e. A ) |
28 |
15 16 25 26 27
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) e. A ) |
29 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ ( N ` P ) e. A /\ ( R ` ( D o. `' F ) ) e. A ) -> ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) e. B ) |
30 |
12 24 28 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) e. B ) |
31 |
1 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ ( R ` D ) ) e. B /\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) e. B ) -> ( ( P .\/ ( R ` D ) ) ./\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) |
32 |
13 21 30 31
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( P .\/ ( R ` D ) ) ./\ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) |
33 |
11 32
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) |
34 |
10
|
fveq1i |
|- ( O ` P ) = ( ( S ` D ) ` P ) |
35 |
1 2 3 5 6 7 8 4 9
|
cdlemksat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( S ` D ) ` P ) e. A ) |
36 |
34 35
|
eqeltrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) e. A ) |
37 |
6 7
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
38 |
15 25 37
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> `' F e. T ) |
39 |
6 7
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ `' F e. T ) -> ( D o. `' F ) e. T ) |
40 |
15 16 38 39
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( D o. `' F ) e. T ) |
41 |
2 6 7 8
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ ( D o. `' F ) e. T ) -> ( R ` ( D o. `' F ) ) .<_ W ) |
42 |
15 40 41
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) .<_ W ) |
43 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkoatnle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) e. A /\ -. ( O ` P ) .<_ W ) ) |
44 |
43
|
simprd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> -. ( O ` P ) .<_ W ) |
45 |
|
nbrne2 |
|- ( ( ( R ` ( D o. `' F ) ) .<_ W /\ -. ( O ` P ) .<_ W ) -> ( R ` ( D o. `' F ) ) =/= ( O ` P ) ) |
46 |
42 44 45
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) =/= ( O ` P ) ) |
47 |
46
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) =/= ( R ` ( D o. `' F ) ) ) |
48 |
2 3 5
|
hlatexch2 |
|- ( ( K e. HL /\ ( ( O ` P ) e. A /\ ( N ` P ) e. A /\ ( R ` ( D o. `' F ) ) e. A ) /\ ( O ` P ) =/= ( R ` ( D o. `' F ) ) ) -> ( ( O ` P ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) ) |
49 |
12 36 24 28 47 48
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) .<_ ( ( N ` P ) .\/ ( R ` ( D o. `' F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) ) |
50 |
33 49
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) ) |
51 |
6 7 8
|
trlcocnv |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ F e. T ) -> ( R ` ( D o. `' F ) ) = ( R ` ( F o. `' D ) ) ) |
52 |
15 16 25 51
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` ( D o. `' F ) ) = ( R ` ( F o. `' D ) ) ) |
53 |
52
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) .\/ ( R ` ( D o. `' F ) ) ) = ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) |
54 |
50 53
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( ( O ` P ) .\/ ( R ` ( F o. `' D ) ) ) ) |