Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|
2 |
|
cdlemk1.l |
|
3 |
|
cdlemk1.j |
|
4 |
|
cdlemk1.m |
|
5 |
|
cdlemk1.a |
|
6 |
|
cdlemk1.h |
|
7 |
|
cdlemk1.t |
|
8 |
|
cdlemk1.r |
|
9 |
|
cdlemk1.s |
|
10 |
|
cdlemk1.o |
|
11 |
|
simp11l |
|
12 |
|
simp22l |
|
13 |
|
simp11 |
|
14 |
|
simp21 |
|
15 |
2 5 6 7
|
ltrnat |
|
16 |
13 14 12 15
|
syl3anc |
|
17 |
2 3 5
|
hlatlej2 |
|
18 |
11 12 16 17
|
syl3anc |
|
19 |
|
simp23 |
|
20 |
19
|
oveq2d |
|
21 |
|
simp22 |
|
22 |
2 3 5 6 7 8
|
trljat1 |
|
23 |
13 14 21 22
|
syl3anc |
|
24 |
20 23
|
eqtr2d |
|
25 |
18 24
|
breqtrd |
|
26 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk14 |
|
27 |
11
|
hllatd |
|
28 |
1 5
|
atbase |
|
29 |
16 28
|
syl |
|
30 |
|
simp12 |
|
31 |
|
simp31 |
|
32 |
1 5 6 7 8
|
trlnidat |
|
33 |
13 30 31 32
|
syl3anc |
|
34 |
1 3 5
|
hlatjcl |
|
35 |
11 12 33 34
|
syl3anc |
|
36 |
10
|
fveq1i |
|
37 |
1 2 3 5 6 7 8 4 9
|
cdlemksat |
|
38 |
36 37
|
eqeltrid |
|
39 |
|
simp13 |
|
40 |
|
simp33 |
|
41 |
40
|
necomd |
|
42 |
5 6 7 8
|
trlcocnvat |
|
43 |
13 30 39 41 42
|
syl121anc |
|
44 |
1 3 5
|
hlatjcl |
|
45 |
11 38 43 44
|
syl3anc |
|
46 |
1 2 4
|
latlem12 |
|
47 |
27 29 35 45 46
|
syl13anc |
|
48 |
25 26 47
|
mpbi2and |
|