| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chfacfisf.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | chfacfisf.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | chfacfisf.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | chfacfisf.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | chfacfisf.r |  |-  .X. = ( .r ` Y ) | 
						
							| 6 |  | chfacfisf.s |  |-  .- = ( -g ` Y ) | 
						
							| 7 |  | chfacfisf.0 |  |-  .0. = ( 0g ` Y ) | 
						
							| 8 |  | chfacfisf.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 9 |  | chfacfisf.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) | 
						
							| 10 |  | chfacfscmulcl.x |  |-  X = ( var1 ` R ) | 
						
							| 11 |  | chfacfscmulcl.m |  |-  .x. = ( .s ` Y ) | 
						
							| 12 |  | chfacfscmulcl.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 13 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 14 | 3 4 | pmatlmod |  |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. LMod ) | 
						
							| 15 | 13 14 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> Y e. LMod ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> Y e. LMod ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> Y e. LMod ) | 
						
							| 18 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 19 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 20 | 18 19 | mgpbas |  |-  ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) | 
						
							| 21 | 3 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 22 | 13 21 | syl |  |-  ( R e. CRing -> P e. Ring ) | 
						
							| 23 | 22 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. Ring ) | 
						
							| 24 | 18 | ringmgp |  |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 27 |  | simp3 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> K e. NN0 ) | 
						
							| 28 | 13 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) | 
						
							| 29 | 10 3 19 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> X e. ( Base ` P ) ) | 
						
							| 31 | 30 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> X e. ( Base ` P ) ) | 
						
							| 32 | 20 12 26 27 31 | mulgnn0cld |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( K .^ X ) e. ( Base ` P ) ) | 
						
							| 33 | 3 | ply1crng |  |-  ( R e. CRing -> P e. CRing ) | 
						
							| 34 | 33 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ P e. CRing ) ) | 
						
							| 35 | 34 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ P e. CRing ) ) | 
						
							| 36 | 4 | matsca2 |  |-  ( ( N e. Fin /\ P e. CRing ) -> P = ( Scalar ` Y ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P = ( Scalar ` Y ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Scalar ` Y ) = P ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Base ` ( Scalar ` Y ) ) = ( Base ` P ) ) | 
						
							| 40 | 39 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( Base ` ( Scalar ` Y ) ) = ( Base ` P ) ) | 
						
							| 41 | 32 40 | eleqtrrd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( K .^ X ) e. ( Base ` ( Scalar ` Y ) ) ) | 
						
							| 42 | 1 2 3 4 5 6 7 8 9 | chfacfisf |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( Base ` Y ) ) | 
						
							| 43 | 13 42 | syl3anl2 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( Base ` Y ) ) | 
						
							| 44 | 43 | 3adant3 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> G : NN0 --> ( Base ` Y ) ) | 
						
							| 45 | 44 27 | ffvelcdmd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( G ` K ) e. ( Base ` Y ) ) | 
						
							| 46 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 47 |  | eqid |  |-  ( Scalar ` Y ) = ( Scalar ` Y ) | 
						
							| 48 |  | eqid |  |-  ( Base ` ( Scalar ` Y ) ) = ( Base ` ( Scalar ` Y ) ) | 
						
							| 49 | 46 47 11 48 | lmodvscl |  |-  ( ( Y e. LMod /\ ( K .^ X ) e. ( Base ` ( Scalar ` Y ) ) /\ ( G ` K ) e. ( Base ` Y ) ) -> ( ( K .^ X ) .x. ( G ` K ) ) e. ( Base ` Y ) ) | 
						
							| 50 | 17 41 45 49 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( ( K .^ X ) .x. ( G ` K ) ) e. ( Base ` Y ) ) |