Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
2 |
1
|
cnaddabl |
|- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } e. Abel |
3 |
|
cnex |
|- CC e. _V |
4 |
1
|
grpbase |
|- ( CC e. _V -> CC = ( Base ` { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } ) ) |
5 |
3 4
|
ax-mp |
|- CC = ( Base ` { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } ) |
6 |
|
addex |
|- + e. _V |
7 |
1
|
grpplusg |
|- ( + e. _V -> + = ( +g ` { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } ) ) |
8 |
6 7
|
ax-mp |
|- + = ( +g ` { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } ) |
9 |
5 8
|
ablcom |
|- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } e. Abel /\ A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
10 |
2 9
|
mp3an1 |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |