Metamath Proof Explorer


Theorem cnaddcom

Description: Recover the commutative law of addition for complex numbers from the Abelian group structure. (Contributed by NM, 17-Mar-2013) (Proof modification is discouraged.)

Ref Expression
Assertion cnaddcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqid { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } = { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ }
2 1 cnaddabl { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∈ Abel
3 cnex ℂ ∈ V
4 1 grpbase ( ℂ ∈ V → ℂ = ( Base ‘ { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ) )
5 3 4 ax-mp ℂ = ( Base ‘ { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } )
6 addex + ∈ V
7 1 grpplusg ( + ∈ V → + = ( +g ‘ { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ) )
8 6 7 ax-mp + = ( +g ‘ { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } )
9 5 8 ablcom ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∈ Abel ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )
10 2 9 mp3an1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )