| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toycom.1 |
⊢ 𝐶 = { 𝑔 ∈ Abel ∣ ( Base ‘ 𝑔 ) = ℂ } |
| 2 |
|
toycom.2 |
⊢ + = ( +g ‘ 𝐾 ) |
| 3 |
|
ssrab2 |
⊢ { 𝑔 ∈ Abel ∣ ( Base ‘ 𝑔 ) = ℂ } ⊆ Abel |
| 4 |
1 3
|
eqsstri |
⊢ 𝐶 ⊆ Abel |
| 5 |
4
|
sseli |
⊢ ( 𝐾 ∈ 𝐶 → 𝐾 ∈ Abel ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐾 ∈ Abel ) |
| 7 |
|
simp2 |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐾 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐾 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑔 = 𝐾 → ( ( Base ‘ 𝑔 ) = ℂ ↔ ( Base ‘ 𝐾 ) = ℂ ) ) |
| 10 |
9 1
|
elrab2 |
⊢ ( 𝐾 ∈ 𝐶 ↔ ( 𝐾 ∈ Abel ∧ ( Base ‘ 𝐾 ) = ℂ ) ) |
| 11 |
10
|
simprbi |
⊢ ( 𝐾 ∈ 𝐶 → ( Base ‘ 𝐾 ) = ℂ ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( Base ‘ 𝐾 ) = ℂ ) |
| 13 |
7 12
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
|
simp3 |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 15 |
14 12
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 18 |
16 17
|
ablcom |
⊢ ( ( 𝐾 ∈ Abel ∧ 𝐴 ∈ ( Base ‘ 𝐾 ) ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐴 ( +g ‘ 𝐾 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐾 ) 𝐴 ) ) |
| 19 |
6 13 15 18
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( +g ‘ 𝐾 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐾 ) 𝐴 ) ) |
| 20 |
2
|
oveqi |
⊢ ( 𝐴 + 𝐵 ) = ( 𝐴 ( +g ‘ 𝐾 ) 𝐵 ) |
| 21 |
2
|
oveqi |
⊢ ( 𝐵 + 𝐴 ) = ( 𝐵 ( +g ‘ 𝐾 ) 𝐴 ) |
| 22 |
19 20 21
|
3eqtr4g |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |