| Step | Hyp | Ref | Expression | 
						
							| 1 |  | toycom.1 | ⊢ 𝐶  =  { 𝑔  ∈  Abel  ∣  ( Base ‘ 𝑔 )  =  ℂ } | 
						
							| 2 |  | toycom.2 | ⊢  +   =  ( +g ‘ 𝐾 ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑔  ∈  Abel  ∣  ( Base ‘ 𝑔 )  =  ℂ }  ⊆  Abel | 
						
							| 4 | 1 3 | eqsstri | ⊢ 𝐶  ⊆  Abel | 
						
							| 5 | 4 | sseli | ⊢ ( 𝐾  ∈  𝐶  →  𝐾  ∈  Abel ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐾  ∈  Abel ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑔  =  𝐾  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑔  =  𝐾  →  ( ( Base ‘ 𝑔 )  =  ℂ  ↔  ( Base ‘ 𝐾 )  =  ℂ ) ) | 
						
							| 10 | 9 1 | elrab2 | ⊢ ( 𝐾  ∈  𝐶  ↔  ( 𝐾  ∈  Abel  ∧  ( Base ‘ 𝐾 )  =  ℂ ) ) | 
						
							| 11 | 10 | simprbi | ⊢ ( 𝐾  ∈  𝐶  →  ( Base ‘ 𝐾 )  =  ℂ ) | 
						
							| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( Base ‘ 𝐾 )  =  ℂ ) | 
						
							| 13 | 7 12 | eleqtrrd | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐴  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 |  | simp3 | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 15 | 14 12 | eleqtrrd | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐵  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 ) | 
						
							| 18 | 16 17 | ablcom | ⊢ ( ( 𝐾  ∈  Abel  ∧  𝐴  ∈  ( Base ‘ 𝐾 )  ∧  𝐵  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐴 ( +g ‘ 𝐾 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝐾 ) 𝐴 ) ) | 
						
							| 19 | 6 13 15 18 | syl3anc | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ( +g ‘ 𝐾 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝐾 ) 𝐴 ) ) | 
						
							| 20 | 2 | oveqi | ⊢ ( 𝐴  +  𝐵 )  =  ( 𝐴 ( +g ‘ 𝐾 ) 𝐵 ) | 
						
							| 21 | 2 | oveqi | ⊢ ( 𝐵  +  𝐴 )  =  ( 𝐵 ( +g ‘ 𝐾 ) 𝐴 ) | 
						
							| 22 | 19 20 21 | 3eqtr4g | ⊢ ( ( 𝐾  ∈  𝐶  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) |